Philippine Merchant Marine Academy Tender
Philippine Merchant Marine Academy Tender
Costs
Summary
Procurement Of Integrated Full Mission Bridge And Engine Room Simulator With Desktop Station For Fy 2025 (re-bid) , Information Technology ,philippine Merchant Marine Academy
Description

Description Quantity Unit Item Description 1 1 Lot Procurement Of Integrated Full Mission Bridge And Engine Room Simulator With Desktop Station Full Mission Bridge Simulator (fmbs) And Mini Bridge Stations’ Features And Applications, Major Components, Bridge Simulator Performance Standards And Hardware 1. Major Components The Full Mission Bridge Simulators That Can Be Integrated With Engine Simulators Shall Consist Of The Following Major Components: A. One (1) Full Mission Bridge Station With 270° Horizontal Display (class A Configuration); B. Seven (7) Mini Bridge Stations With 120° Horizontal Display (class B Configuration); C. One (1) Server Station; D. One (1) Instructor Station; E. One (1) Simulator Scenario Development Station; And F. One (1) Briefing/ Debriefing Station. 2. Features And Applications 2.1 The Bridge Simulator Should Provide A Realistic, Ship-like Environment Based On Real Hardware Consoles And High-quality Visualization. The Systems Include Major Components Such As Conning, Radar/ Arpa And Ecdis, Gmdss, Navigation Equipment, Bearing Finder, Steering Control Console, Engine Control, Auto Pilot System, Overhead Display, Etc. 2.2 The Bridge Simulator Product Shall Be Certified And Compliant As Class A (full Mission), B (multi-task), C (limited Task), And D (cloud-based Distant Learning) Type-approved Maritime Simulator System By An Internationally Recognized Classification Society. The Compliance With Classification Shall Be Reflected In The Certificate Of The Product. 2.3 The Simulator Can Be Utilized To A Variety Of Navigation Techniques Under Different Environmental Conditions, Serving A Wide Range Of Purposes As Follows: 1. Control Of The Ship While Navigating In The Operational And Emergency Modes In Various Weather Conditions With The Possibility Of Setting Wind And Current Parameters; 2. Analysis Of The Above-water Situation In Day And Night Conditions; In Poor Visibility By Visible Navigation Lights And Information Received From Radar/ Arpa; 3. Use Of The Electronic Chart-based Navigational Information System (ecdis); 4. Practical Use Of Radio Equipment And Global Maritime Distress And Safety System (gmdss) Facilities; 5. Application Of The International Regulations For Preventing Collisions At Sea; 6. Ship Control During Anchoring And Mooring; 7. Ship Control During Towing Operations; 8. Ship Control During Maneuvers "man Overboard"; 9. Rational Methods Of Ship Control In Case Of Main Engines (me) And Ship And Navigation Equipment Failures During Movement; 10. Eye Survey Of Above-water And Radar Situation, Determination Of Vessel Movement Elements; 11. Navigational Situation Assessment By Visual Observation During Daytime, By Lights At Night Time And By Observation Of Transmission Of Echo Signals On Ppi Simulators In Conditions Of Limited Visibility; 12. Visual Determination Of Vessel Movement Patterns, Maneuvering Capabilities And Dimensions; 13. Selection And Execution Of Collision Avoidance Maneuvers In Open Sea, During Night And In Limited Visibility Conditions Using Radar/arpa; 14. Evaluation Of Accuracy Of Primary And Secondary Information Received From Arpa, Consideration Of Factors Affecting Accuracy Of Arpa And Delay In Formation Of Secondary Radar Information; 15. Orientation Of Ships In Complex Navigation Conditions In Daytime And Nighttime And In Conditions Of Limited Visibility; 16. Use Of Ecdis For Preliminary And Executive Plotting, Practicing Correct Response To Emergency Signals Produced By Ecdis, Solution Of Chart-metric Tasks And Ensuring Safety Of Navigation With The Use Of Information Received From Ecdis; 17. Use Of Basic Capabilities Of Marine Mobile Service And Marine Mobile Satellite Service. 2.4 The Bridge Simulator Product Shall Be Able To Address The Following Stcw Competencies And Shall Be Reflected In The Certificate. · Table A-ii/1.1 - Plan And Conduct A Passage And Determine Position. • Table A-ii/1.2 - Maintain A Safe Navigational Watch. • Table A-ii/1.3 - Use Of Radar And Arpa To Maintain Safety Of Navigation. § Table A-ii/1.4 - Use Of Ecdis To Maintain The Safety Of Navigation. • Table A-ii/1.5 - Respond To Emergencies. • Table A-ii/1.6 - Respond To A Distress Signal At Sea. • Table A-ii/1.8 - Transmit And Receive Information By Visual Signaling. • Table A-ii/1.9 - Manoeuvre The Ship. • Table A-ii/2.1 - Plan A Voyage And Conduct Navigation. • Table A-ii/2.2 - Determine Position And The Accuracy Of Resultant Position Fix By Any Means. • Table A-ii/2.3 - Determine And Allow For Compass Errors. • Table A-ii/2.4 - Co-ordinate Search And Rescue Operations. • Table A-ii/2.5 - Establish Watchkeeping Arrangements And Procedures. • Table A-ii/2.6 - Maintain Safe Navigation Through The Use Of Information From Navigation Equipment And Systems To Assist Command Decision-making. • Table A-ii/2.7 - Maintain The Safety Of Navigation Through The Use Of Ecdis And Associated Navigation Systems To Assist Command Decision Making. • Table A-ii/2.10 - Maneuver And Handle A Ship In All Conditions. • Table A-ii/2.11 - Operate Remote Controls Of Propulsion Plant And Engineering Systems And Services. • Table A-ii/3.1 - Plan And Conduct A Coastal Passage And Determine Position. • Table A-ii/3.2 - Maintain A Safe Navigational Watch. • Table A-ii/3.3 - Respond To Emergencies. • Table A-ii/3.4 - Respond To A Distress Signal At Sea. • Table A-ii/3.5 - Manoeuvre The Ship And Operate Small Ship Power Plants. • Table A-ii/4.1 - Steer The Ship And Also Comply With Helm Orders In The English Language. • Table A-ii/4.2 - Keep A Proper Look-out By Sight And Hearing. Table A-ii/5.2 - Contribute To Berthing, Anchoring And Other Mooring Operations. • Table A-v/4-1.1 - Contribute To Safe Operation Of Vessels Operating In Polar Waters. • Table A-v/4-1.2 - Monitor And Ensure Compliance With Legislative Requirements. • Table A-v/4-1.3 - Apply Safe Working Practices, Respond To Emergencies. • Table A-v/4-1.4 - Ensure Compliance With Pollution-prevention Requirements And Prevent Environmental Hazards. • Table A-v/4-2.1 - Plan And Conduct A Voyage In Polar Waters. • Table A-v/4-2.2 - Manage The Safe Operation Of Vessels Operating In Polar Waters. • Table A-v/4-2.3 - Maintain Safety Of The Ship's Crew And Passengers And The Operational Condition Of Life- Saving, Firefighting And Other Safety Systems. 2.5 The Bridge Simulator Shall Allow For Training And Certification Of Watch Officers, Chief Officers, Captains, And Pilots Serving On Commercial And Fishing Vessels Of 500 Gross Tonnage Or More In Accordance With The Requirements Of The Imo Stcw Convention And Model Courses: · 1.07 – Radar Navigation, Radar Plotting And Use Of Arpa; · 1.08 – Radar, Arpa, Bridge Teamwork And Search & Rescue; · 1.22 – Ship Simulator And Bridge Teamwork; · 1.27 – Operational Use Of Electronic Chart Display And Information System (ecdis); · 1.32 – Operational Use Of Integrated Bridge System; · 1.34 – Operational Use Of Ais; · 2.02 – Maritime Sar Coordinator; · 3.11 – Marine Accident And Incident Investigation With Compendium; · 3.19 – Ship Security Officer; · 3.23 – Actions To Be Taken To Prevent Acts Of Piracy And Armed Robbery; · 7.01 – Master And Chief Mate; · 7.03 – Officer In Charge Of Navigational Watch; · 7.05 – Skipper Of Fishing Vessel; · 7.06 – Officer In Charge Of Navigational Watch Of Fishing Vessel; Gmdss Simulator: · 1.25 – General Operator’s Certificate For The Gmdss; · 1.26 – Restricted Operator’s Certificate For The Gmdss. 2.6 The Bridge Simulator Shall Have All The Ownship Models, Target Ship Models , Objects And Exercise Areas Available In The Database Of The Simulator Product. It Shall Also Include Polar Areas, The Existing Models And Areas In Current Simulator, Naval And Coast Guard Ship Models, Ship Models Ready For Integration With Engine Simulators And Ship/engine Models Using Future Fuels. 2.7 The Simulator Shall Have An Intercom Installed In The Instructor Station And All Bridge Stations. 2.8 The Simulator Scenario Development Station Shall Have A Dedicated Station (specification 4.4) With Software Application With Capabilities For Port Design And Planning, Fairways Design, Ship Modelling And Incident Investigation, Study Ship Operations In Restricted Water Conditions And Mooring Operations, Including Tug Operation. It Shall Act As A Platform To Get Used To New Interfaces During Sea Trials. The Software Shall Allow The Designed Own Ship Models And Exercise Areas To Be Loaded Onto The Bridge Simulator. 2.9 The Simulator Shall Have An Evaluation And Assessment Method Designed For The Evaluation And Assessment Of A Range Of Predefined Assessment Parameters From The Following Categories: • Planning And Conducting A Passage And Determine Position; • Maintain Safe Navigational Watch; • Using Radar And Arpa To Maintain Navigational Safety; • Ability To Operate And Analyze Information Obtained From Arpa; • Respond To Emergencies; • Use Imo Standard Marine Communication Phrases And Use English Inwriting And Speaking; • Transmit And Receive Information Using Visual Signals; • Maneuver The Ship; • Colreg. 2.10 The Simulator Shall Have The Ability To Set Up A Scoring And Grading System To Evaluate The Operator’s Performance. The Program Allows The Instructor To Monitor The Results Of The Bridge Team / Operator Workstation Performance. 2.11 The Simulator Shall Be Capable Of Simulating Ship Operation In Polar Waters Or Ice Navigation According To The Polar Code And Shall Have The Following Training Capabilities: - Ice Management Of Offshore Installations In An Arctic Environment, - Use Of Radar Data And Ice Charts In Ecdis While Navigating In Ice Conditions, - Following Of Icebreakers, - Offshore Loading Operations To Include Mooring To Single Point Mooring And Floating Production Storage And Offloading Equipment In Ice Conditions, And - Navigation In Shattered Ice, Along Hard Ice Edges, Bumping Against Ice Edges, In Open Pack Ice, In Ice Holes, And Spots Of Ice-free Water. 2.12 The Ice Navigation Environment Shall Have The Following Characteristics: - Capable Of Ice Accumulation On Ship Superstructure, - Ship’s Tracks On Ice Fields Re-freeze As Programmed By The User, - Ice Mounds And Channels Can Be Added By The User, - Characteristics Of Ice Resistance Are Based On The Type Of Ice, Thickness, And Accumulation, - Capable Of Traversing Large Ice Areas, And - Realistic Representation Of Iceberg Objects. 3. Bridge Simulator Performance Standards 3.1 Physical Realism The Bridge Simulator Stations Shall Have The Following Physical Realism: A. The Equipment, Consoles, And Workstations Shall Be Installed, Mounted, And Arranged In A Manner That Mimics An Actual Bridge Of A Ship. B. The Workstations Shall Have Standard Rubber Mat Flooring. The Simulator Shall Have The Following Equipment: C. Controls Of Propulsion Plant Operations, Including Engine Telegraph, Pitch-control And Thrusters. There Shall Be Indicators For Shaft(s) Revolutions And Pitch Of Propeller(s). There Shall Be Controls For One Propeller And One Bow Thruster. D. Controls Of Propulsion Plant For Mooring Operations. By Any Method, It Shall Be Possible To Observe The Ship's Side And The Dock During Operation Of Such Controls. E. Controls Of Auxiliary Machinery. There Shall Be Controls For At Least Two Auxiliary Engines, Including Electric Power Supply Control. F. Steering Console, Including Equipment For Hand Steering And Automatic Steering With Controls For Switchover. There Shall Be Indicators Of Rudder Angle And Rate Of Turn. G. Steering Compass And Bearing Compass (or Repeater) With An Accuracy Of At Least 1 Degree. H. At Least One Radar/arpa Display/unit (automatic Radar Plotting Aid). It Shall Be Possible To Simulate Both A 10 Cm (s-band) And A 3 Cm (x-band) Radars. The Radar Shall Be Capable To Operate In The Stabilised Relative-motion Mode And Sea- And Ground-stabilised True-motion Modes (see Stcw Section A-1/12.4.1 And 1/12.5 And Paragraph 2 Of Section B-i/12). I. Communication Equipment Per Gmdss (global Maritime Distress Safety System) Framework, Covering At Least The Requirements For The Relevant Area. J. The Simulator Shall Include A Communications System That Will Allow For Internal Ship Communications To Be Conducted. K. Ecdis (electronic Chart Display And Information System) Displaying Selected Information From A System Electronic Navigational Chart (senc) With Positional Information From Navigation Sensors Like Ais And Radar To Assist The Mariner In Route Planning And Route Monitoring, And By Displaying Additional Navigation-related Information. (see Stcw Section B-i/12). L. Gps (global Positioning System), Echo-sounder And Speed Log Showing Speed Through The Water (1 Axis) For Ships Below 50,000 Grt And In Addition Speed And Distance Over Ground In Forward And Athwart Ship Direction For Ships Above 50,000 Grt. M. Instrument (anemometer) For Indication Of Relative Wind- Direction And Force. N. Ship Sound Signal Control Panel According To Colreg. O. Instrument For Indication Of Navigational Lights. P. Function For Transmitting Visual Signals (morse Light). Q. Control System For General Alarm And Fire Detection/alarm And Other Alarms. R. Ais (automatic Identification System). S. Ship-borne Meteorological Instrument. The Simulator Shall Have The Following Additional Requirements For Training In Ice Navigation: T. Controls For Propulsion Plant Operations, Including Engine Telegraph, Pitch Control, And Thrusters. There Shall Be Indicators For Shaft Revolutions And Pitch Of Propeller. There Shall Be Controls For At Least One Propeller And One Bow Thruster. U. Two Speed And Distance Measuring Devices. Each Device Should Operate On A Different Principle, And At Least One Device Should Be Capable Of Being Operated In Both The Sea And The Ground Stabilized Mode. V. Searchlight Controllable From Conning Positions. W. Manually Operated Flashing Red Light Visible From Astern To Indicate When The Ship Is Stopped. X. Vdr (voyage Data Recorder) Or Capability For Vessel History Track And Learner Actions Log From The Instructor And The Assessor Position. Y. Equipment Capable Of Receiving Ice, Icing Warnings, And Weather Information Charts. Z. Anchoring And Towing Arrangements. The Simulator Shall Have The Following Additional Requirements For Training In Integrated Bridge Systems Including Integrated Navigation Systems: Aa. Workstation For Navigating, Maneuvering And Monitoring Consisting Of: · Radar/arpa · Ecdis · Conning Display · Binoculars Control · Autopilot Control · Observer Position/ Visual Control · Information On Position-fixing Systems · Information On Ship Automatic Identification System (ais) · Heading Control System · Flags, Daytime Shapes And Sound Signals · Control For The Main Engine Including Emergency Stop · Control For The Main Rudder Using Helm · Controls For Thruster · Two-way Uhf Radiotelephone (walkie-talkie) With Charging Connection · Internal Communication Equipment · Public Address System · Vhf With Channel Selector · Remote Control For Searchlight · Rudder Pump Selector Switch · Steering Mode Selector Switch · Steering Position Selector Switch · Illumination Of Equipment And Displays In The Surrounding Darkness · Sound Reception System · Acknowledgment Of The Watch Alarm · Controls For Console Lighting · Indicators For: - Propeller Revolutions (actual And Desired) - Main Engine Revolution In The Case Of Reduction Geared Engine - Propeller Pitch In The Case Of Controllable Pitch Propeller - Torque - Starting Air - Lateral Thrust - Speed - Rudder Angle - Rate-of-turn - Gyro Compass Heading - Magnetic Compass Heading - Heading Reminder (pre-set Heading) - Water Depth Including Depth Warning Adjustment - Time - Wind Direction And Velocity - Air And Water Temperature - Clinometer - Alarms · Signal Transmitter For: - Whistle - Automatic Device For Fog Signals - Alarms, (general Alarm, Emergency Alarm, Etc.) - Morse Signaling Light Bb. Workstation For Manual Steering (wheelhouse) Consisting Of: · Steering Wheel · Rudder Pump Selector Switch · Indications For: - Gyro Compass Heading - Magnetic Compass Heading - Pre-set Heading - Rudder Angle - Rate Of Turn Cc. Workstation For Planning And Documentation Consisting Of: · Ecdis Including Navigation Planning Station · Route Planning Devices · Chart Table · Paper Charts · Plotting Aids Dd. Workstation For Communications Consisting Of: · Gmdss Equipment As Required For The Applicable Sea Area · Vhf-dsc, Radiotelephone · Mf-dsc, Radiotelephone · Mf/hf-dsc, Nbdp, Radiotelephone · Mf/hf Mf/hf Radio Telex · Inmarsat-ses, Egc Rx With Lrit And Ssas · Navtex/egc/hf Direct Printing Telegraph · Fbb/iridium · Cospas-sarsat Epirb · Sart · Ais Sart · Main Station For Two-way Vhf Radiotelephone · Aircraft Vhf Radiotelephone · Gmdss Alarm Panel · Radio Direction Finder Rt-500-m (marine) · Power Switchboard · Battery Charger · Virtual Printer Ee. All Systems Related To The Integrated Bridge System Shall Include Failure Control(s) And Method(s) To Train And Assess The Learner In The Use Of Advanced Equipment, Technology And Enable Familiarization And Training To Understand The Limitations Of Automatic Systems. 3.2 Behavioral Realism The Bridge Simulator Stations Shall Have The Following Behavioral Realism: A. The Simulation Of Ownship Shall Be Based On A Mathematical Model With 6 Degrees Of Freedom. B. The Model Shall Realistically Simulate Own Ship Hydrodynamics In Open Water Conditions, Including The Effects Of Wind Forces, Wave Forces, Tidal Stream And Currents. C. The Model Shall Realistically Simulate Own Ship Hydrodynamics In Restricted Waterways, Including Shallow Water And Bank Effects, Interaction With Other Ships And Direct, Counter And Sheer Currents. D. The Simulator Shall Include Mathematical Models Of Different The Types Of Ownships. E. The Simulator Shall Include Tug Models That Can Realistically Simulate Tug Assistance During Maneuvering And Escort Operations. It Shall Be Possible To Simulate Pull, Push, Reposition Towing And Escorting. F. The Simulator Shall Include Exercise Areas Including Correct Data For Landmass, Depth, Buoys, Tidal Streams And Visual As Appropriate To The Nautical Chart And Publication Used For The Relevant Training Objectives. G. The Radar Simulation Equipment Shall Be Capable Of Model Weather, Tidal Streams, Current, Shadow Sectors, Spurious And False Echoes And Other Propagation Effects, And Generate Coastlines, Navigational Buoys And Search And Rescue Transponders. H. The Arpa Simulation Equipment Shall Incorporate The Facilities For: - Manual And Automatic Target Acquisition - Fast Track Information - Use Of Exclusion Areas - Vector/graphic Time-scale And Data Display - Trial Maneuvers. I. The Ecdis Simulation Equipment Shall Incorporate The Facilities For: - Integration With Other Navigation Systems - Own Position - Sea Area Display - Mode And Orientation - Chart Data Displayed - Route Monitoring - User-created Information Layers - Contacts (when Interfaced With Ais And/or Radar Tracking) - Radar Overlay Functions. J. The Simulator Shall Provide An Own Ship Engine Sound, Reflecting The Power Output. K. The Simulator Shall Provide Capabilities For Realistically Conduct Anchoring Operations. L. The Model Shall Realistically Simulate Own Ship Hydrodynamics In Interaction With Applicable Anchor And Chain Dimensions With Different Bottom Holding Grounds, Including The Effects Of Wind Forces, Wave Forces, Tidal Stream And Currents. M. The Simulator Shall Provide Capabilities For Realistically Simulate The Function Of Mooring And Tug Lines And How Each Line Functions As Part Of An Overall System Taking Into Account The Capacities, Safe Working Loads, And Breaking Strengths Of Mooring Equipment Including Mooring Wires, Synthetic And Fiber Lines, Winches, Anchor Windlasses, Capstans, Bitts, Chocks And Bollards. The Simulator Shall Have The Following Additional Requirements For Training In Ice Navigation: N. The Own Ship Model Shall Realistically Simulate Hydrodynamics In Interaction With Solid Ice Edge. O. The Own Ship Model Shall Realistically Simulate Hydrodynamics And Ice Pressure In Interaction With Solid And Packed Ice. Ship Motion In Solid Ice Should Affect At Least Ship Speed And Turning Radius. P. The Own Ship Model Shall Realistically Simulate The Effects Of Reduced Stability As A Consequence Of Ice Accretion. Q. It Shall Be Possible To Simulate The Effect Of The Following Ice Conditions With Variations: - Ice Type - Ice Concentration - Ice Thickness. R. It Shall Be Possible To Realistically Simulate The Towing Of Ownship – Ownship, And Own Ship Target Ship And Target Ownship. It Shall Be Possible To Introduce Different Towing Gear Like Rope Or Steel Wire With Different Strength And Elasticity, Forward, Stern And Side Towing. S. It Shall Be Possible To Realistically Simulate The Interaction Between The Ships Propeller Wash And The Ice. T. It Shall Be Possible To Realistically Simulate Ice Drift. U. The Simulator Shall Be Equipped With Iceberg Targets Of At Least Six Different Sizes Including Realistic Underwater Bodies Which Interacts With The Sea Bottom. The Icebergs Should Be Visible On The Ship's Radar. V. Motion Through Ice Hummocks Should Be Simulated Realistically Considering Ship Icebreaking Capabilities And Affect Ship's Speed, Roll And Pitch. The Simulator Shall Have The Following Additional Requirements For Training In Integrated Bridge Systems Including Integrated Navigation System: W. The Integrated Navigation System Should Combine Process And Evaluate Data From All Sensors In Use. The Integrity Of Data From Different Sensors Should Be Evaluated Prior To Distribution. X. The Integrated Navigation System Shall Ensure That The Different Types Of Information Are Distributed To The Relevant Parts Of The System, Applying A Consistent Common Reference System For All Types Of Information. Y. The Integrated Navigation System Shall Provide Information On Position, Speed, Heading, And Time. Z. The Integrated Navigation System Shall Be Able To Automatically, Continually And Graphically Indicate The Ship's Position, Speed And Heading And, Where Available, Depth In Relation To The Planned Route As Well As To Known And Detected Hazards. Aa. The Integrated Navigation System Shall, In Addition, Provide Means To Automatically Control Heading, Track Or Speed, And Monitor The Performance And Status Of These Controls. Bb. Alarms Shall Be Displayed So That The Alarm Reason And The Resulting Functional Restrictions Can Be Easily Understood. 3.3 Operating Environment The Bridge Simulator Shall Exhibit The Following Operating Environment: A. The Simulator Shall Be Able To Present Different Types Of Target Ships, Each Equipped With A Mathematical Model, Which Accounts For Motion, Drift And Steering Angles According To Forces Induced By Current, Wind Or Wave. B. The Targets Shall Be Equipped With Navigational And Signal-lights, Shapes, And Sound Signals, According To Rules Of The Road. The Signals Shall Be Individually Controlled By The Instructor, And The Sound Signals Shall Be Directional And Fade With Range. Each Ship Shall Have An Aspect Recognizable At A Distance Of 6 Nautical Miles In Clear Weather. A Ship Underway Shall Provide Relevant Bow- And Stern Wave. C. The Simulator Shall Be Equipped With Targets Enabling Search And Rescuing Persons From The Sea, Assisting A Ship In Distress And Responding To Emergencies Which Arise In Port. Such Targets Shall At Least Be: · Rocket Parachute Flares · Hand Flares · Buoyant Smoke Signals · Sart (search And Rescue Transponder) · Satellite Epirb (emergency Position Indicating Radio Beacon) · Lifeboat · Life Raft · Rescue Helicopter · Rescue Aircraft · People In Water. D. The Simulator Shall Be Able To Present At Least 20 Target Ships At The Same Time, Where The Instructor Shall Be Able To Programme Voyage Routes For Each Target Ship Individually. (see Stcw Section A-1/12.4.3) E. The Simulator Shall Provide A Realistic Visual Scenario By Day, Dusk Or By Night, Including Variable Meteorological Visibility, Changing In Time. It Shall Be Possible To Create A Range Of Visual Conditions, From Dense Fog To Clear Conditions. F. The Visual System And/or A Motion Platform Shall Replicate Movements Of Own Ship According To 6 Degrees Of Freedom. G. The Projection Of The View Shall Be Placed At Such A Distance And In Such A Manner From The Bridge Windows That Accurate Visual Bearings May Be Taken To Objects In The Scene. It Shall Be Possible To Use Binocular Systems For Observations. H. The Visual System Shall Present The Outside World By A View Around The Horizon (360°). The Horizontal Field Of View May Be Obtained By A View Of 270° And Where The Rest Of The Horizon May Be Panned (to Move The “camera”). (applicable Only To Full Mission Bridge Station With 270° Horizontal Display) I. The Visual System Shall Present The Outside World By A View Of At Least 120° Horizontal Field Of View. In Addition, At Least The Horizon From 120° Port To 120° Starboard Shall Be Able To Be Visualised By Any Method. (applicable Only To Mini Bridge Station With 120° Horizontal Display). J. The Visual System Shall Present A Vertical View From The Workstations For Navigation, Traffic Surveillance And Manoeuvring Enabling The Navigator To Detect And Monitor Objects Visually On The Sea Surface Up To The Horizon Within The Required Horizontal Field Of View When The Ship Is Pitching And Rolling. In Addition, By Any Method, It Shall Be Possible To Observe The Ship's Side And The Dock During Mooring Operations. K. The Visual System Shall Present All Navigational Marks According To Charts Used. L. The Visual System Shall Show Objects With Sufficient Realism (detailed Enough To Be Recognized As In Real Life). M. The Visual System Shall Show Mooring And Towing Lines With Sufficient Realism In Accordance With The Forces Effecting The Tension. N. The Visual System Shall Provide A Realistic Set Of Bow Wave, Sea Spray And Wakes In Accordance With Ships Power Output, Speed And Weather Conditions. O. The Visual System Shall Provide A Realistic Set Of Flue Gas Emission And Waving Flag Effect In Accordance With Ships Power Output, Speed And Weather Conditions. P. The Simulator Shall Be Capable Of Providing Environmental Sound According To Conditions Simulated. Q. The Navigated Waters Shall Include A Current Pattern, Changeable In Time, According To The Charts Used. Tidal Waters Shall Be Reflected. R. The Simulation Shall Include The Depth According To Charts Used, Reflecting Water Level According To Tidal Water Situation. S. The Simulator Shall Provide At Least Two Different Wave Spectra, Variable In Direction Height And Period. T. The Visual System Shall Provide A Realistic Set Of Wind Waves Including White Caps According To The Beaufort Wind Force Scale. The Simulator Shall Have The Following Additional Requirements For Training In Ice Navigation: U. The Visual System Shall Be Capable Of Showing Concentrations Of Solid And Broken Ice Of Different Thickness. V. The Visual System Shall Be Capable Of Showing The Result Of Icebreaking Including Opening, Twin Breaking And Compacting Channel. W. The Visual System Shall Be Capable Of Showing The Effects Of Searchlight. X. The Visual System Shall Be Capable Of Showing The Effects Of The Ice Accretion To The Own Ship Model. The Simulator Shall Have The Following Additional Requirements For Training In Integrated Bridge Systems Including Integrated Navigation Systems: Y. There Shall Be A Field Of View Around The Vessel Of 360° Obtained By An Observer Moving Within The Confines Of The Wheelhouse Or May Be Panned (to Move The Camera). 4. Hardware Requirements 1 Set 4.1 Full Mission Bridge Simulator (horizon Field View Of 270 Degrees) A. Steel Fabrication Of Main Bridge Consoles Consisting Of: I. Conning & Maneuvering Console Ii. Radar/arpa Consoles Iii. Ecdis Consoles Iv. Bearing Station Console V. Navigation Aids Equipment Console Vi. Gmdss Console Vii. Wheelhouse/ Steering Stand Console Viii. Chart Table With Gooseneck Dimming Light Ix. Overhead Panel Display X. Gyro Repeater With Pelorus Stand Xi. Binocular/ Visual And Instrument Console Xii. The Console Must Made Of Steel W/ Handrails A. Visual Channels Specification (minimum Requirements) · 9 X 70” Visual Screens Led Backlit · 9 X Pc Visual Channel Computer · Intel Core I5-14500 3.3 Ghz Or Above · 16 Gb Ram · 256 M.2 Ssd · Rtx 4070 Or Higher · Keyboard/mouse · Hdmi Cable 5 Mtr · Windows 10/11 Pro 64 Bit · Ups 1.5kva A. Surge Protection B. W/ Automatic Voltage Regulator B. 1 X Conning And Maneuvering Console (minimum Requirements) · 1 X Monitor 24” · Simulator Pc · Intel Core I5-14500 3.3 Ghz Or Above · 16 Gb Ram · 256 M.2 Ssd · Windows 10/11 Pro 64 Bit · Ups 1.5kva A. Surge Protection B. W/ Automatic Voltage Regulator · Console Made Of Steel (tct 0.8 Mm To 2 Mm) · 1 X Trackball Control (for Conning Display Console) · 1 X Joystick Control (for Searchlight/ Binocular) · 1 X Emergency Stop Button · 1 X Steering Panel Software Pc · 1 X Steering Knob/ Tiller · 1 X Steering Override Control/ Buttons · 1 X Autopilot Panel Control Software Pc (touchscreen/actual Panel With Buttons) · 1 X Main Engine Twin Lever Telegraph · 1 X Twin Lever Thrusters · 1 X Handset With Cradle And Ptt Switch · 1 X Vhf Panel Pc · 1 X Low Power Speakers C. 2 X Ecdis Console (minimum Requirements) · 2 X Monitor 24” · 2 X Simulator Pc · Intel Core I5-14500 3.3 Ghz Or Above · 16 Gb Ram · 256 M.2 Ssd · Rtx 4070 Or Higher · Windows 10/11 Pro 64 Bit · Ups 1.5kva A. Surge Protection B. W/ Automatic Voltage Regulator · 2 X Console Made Of Steel (tct 0.8 Mm To 2 Mm) · 2 X Ecdis Keyboard With Trackball Control · 1 X Low Power Speakers D. 2 X Radar/arpa Console · 2 X Monitor 24” · 2 X Simulator Pc · Intel Core I5-14500 3.3 Ghz Or Above · 16 Gb Ram · 256 M.2 Ssd · Rtx 4070 Or Higher · Windows 10/11 Pro 64 Bit · Ups 1.5kva A. Surge Protection B. W/ Automatic Voltage Regulator · 2 X Console Made Of Steel (tct 0.8 Mm To 2 Mm) · 2 X Radar/arpa Keyboard With Trackball Control · 1 X Low Power Speakers E. Bearing Station Console · 1 X Monitor 24” · Simulator Pc · Intel Core I5-14500 3.3 Ghz Or Above · 16 Gb Ram · 256 M.2 Ssd · Rtx 4070 Or Higher · Windows 10/11 Pro 64 Bit · Ups 1.5kva A. Surge Protection B. W/ Automatic Voltage Regulator · Console Made Of Steel (tct 0.8 Mm To 2 Mm) F. Binocular/ Visual And Instrument Console (minimum Requirements) · 2 X Monitor 24” · Simulator Pc · Intel Core I5-14500 3.3 Ghz Or Above · 16 Gb Ram · 256 M.2 Ssd · Rtx 4070 Or Higher · Windows 10/11 Pro 64 Bit · Ups 1.5kva A. Surge Protection B. W/ Automatic Voltage Regulator · Console Made Of Steel (tct 0.8 Mm To 2 Mm) · Binocular/ Visual Control With Joystick G. Overhead Panel Display (minimum Requirements) · 1 X Monitor 28” Mounted · Simulator Pc · Intel Core I5-14500 3.3 Ghz Or Above · 16 Gb Ram · 256 M.2 Ssd · Windows 10/11 Pro 64 Bit · Hdmi Cable – 10 Mtr · Ups 1.5kva A. Surge Protection B. W/ Automatic Voltage Regulator H. 1 X Wheelhouse/ Steering Stand Console (minimum Requirements) · Console Made Of Steel (tct 0.8 Mm To 2 Mm) · 1 X Steering Wheel (outer Rim For Hand Grip Covered With Rubber) · 2 X Panel Pc Touchscreen Display For The Following Controls But Is Not Limited To: - Rudder Pump Selector Switch - Steering Mode Selector Switch (nfu/fu) - Steering Position Selector Switch And Indications For: - Gyro Compass Heading - Magnetic Compass Heading - Rudder Angle Indicator, - Pre-set Heading - Rudder Angle - Rate Of Turn - Steering Mode (fu/nfu) – Track Control/auto Navigation I. 1 X Gmdss Console With Trainee Workplace Software (minimum Requirements) · 2 X Monitor 24” · Simulator Pc · Intel Core I5-14500 3.3 Ghz Or Above · 16 Gb Ram · 256 M.2 Ssd · Windows 10/11 Pro 64 Bit · Ups 1.5kva A. Surge Protection B. W/ Automatic Voltage Regulator · Console Made Of Steel (tct 0.8 Mm To 2 Mm) · 1 X Handset Including: - Cradle With A Ptt Switch - Usb Interface Board - Handset Box · 1 X Gooseneck Dimmable Light · 1 X Usb Audio Unit · Keyboard W/ Mouse Or Touchscreen Pc · Console Made Of Steel (tct 0.8 Mm To 2 Mm) J. 1 X Chart Table Console 1300mm X 1312mm With Chart Drawers, Flag And Pennants Rack And Plotting Aids (minimum Requirements) · 1 X Monitor 24” · Computer · Intel Core I5-14500 3.3 Ghz Or Above · 16 Gb Ram · 256 M.2 Ssd · Ups 1kva A. Surge Protection B. W/ Automatic Voltage Regulator · Keyboard W/ Mouse · 1 X Gooseneck Dimmable Light · 2 X Parallel Ruler · 1x One-hand Compass Divider Steel · 4 X Plotting Triangle With Handle · 1x Deck Log Book · 1x Night Order Book · 1x Bell Book · 1x Chronometer · Admiralty Paper Charts Related To Installed Maps In Simulator K. Gyro Repeater Stand With Pelorus · Bearing Repeater Compass · Pelorus Stand · Power: 24vd · Signal: Rs422 Nmea L. Weather Instruments · 1x Ships Clock · 1x Aneroid Barometer · 1x Hygrometer M. 1 X Intercom Ip Telephone · 2 Sip Lines · Hd Audio With Wideband Codec, G.722 · 10-speed Dial Keys, 1 Programmable Dss Key · 3-way Conference · Desk/wall-mounted · Handset/hands-free Mode · 10/100 Mbps · Poe/power Adaptor · White Color N. Speaker With Subwoofer Channel Sound System Specification: · Interface With Visual Pc · Realization Of 3d Sound Effect System · Atleast 450watts Speaker With Subwoofer · Port: Mini Jack 7 Sets 4.2 Mini Bridge Simulator (horizon Field View Of 120 Degrees) A. Consoles Made In Formica Laminated Board Fabrication Of Mini Bridge Consoles Consisting Of: I. Conning Console Ii. Radar/arpa Console Iii. Ecdis Console Iv. Gmdss Console V. Maneuvering And Steering Console Vi. Overhead Panel Display Vii. Chart Table With Gooseneck Dimming Light A. Mini Bridge Station Visual Channels Specification (minimum Requirements) · 3 X 45” 4k Display For Visual · 3 X Pc Visual Channel Computer · Intel Core I5-14500 3.3 Ghz Or Above · 16 Gb Ram · 256 M.2 Ssd · Rtx 4070 Or Higher · Windows 10/11 Pro 64 Bit · Keyboard/mouse · Hdmi Cable · 1 X Ups 1.5kva A. Surge Protection B. W/ Automatic Voltage Regulator B. Conning Console (minimum Requirements) · 1 X Monitor 24” · Simulator Pc · Intel Core I5-14500 3.3 Ghz Or Above · 16 Gb Ram · 256 M.2 Ssd · Ups 1.5kva A. Surge Protection B. W/ Automatic Voltage Regulator · 1 X Trackball Control (for Conning Display Console) C. Maneuvering And Steering Console (metallic Material Console) · 1 X Main Engine Twin Lever Telegraph · 1 X Twin Lever Thrusters · 1 X Steering Knob/ Tiller · 1 X Steering Override Control/ Buttons · 1 X Steering Wheel (outer Rim For Hand Grip Covered With Rubber) · 1 X Steering System Panel Software Pc With Autopilot Software (touchscreen Display/actual Panel With Buttons) With Following Controls But Is Not Limited To: - Rudder Pump Selector Switch - Steering Mode Selector Switch (nfu/fu) - Steering Position Selector Switch And Indications For: - Gyro Compass Heading - Magnetic Compass Heading - Rudder Angle Indicator, - Pre-set Heading - Rudder Angle - Rate Of Turn - Steering Mode (fu/nfu) – Track Control/auto Navigation D. Ecdis Console (minimum Requirements) · 1 X Monitor 24” · 1 X Simulator Pc · Intel Core I5-14500 3.3 Ghz Or Above · 16 Gb Ram · 256 M.2 Ssd · Rtx 4070 Or Higher · Window 10/11 Pro 64 Bit · Ups 1.5kva A. Surge Protection B. W/ Automatic Voltage Regulator · Keyboard With Trackball E. Radar/arpa Console (minimum Requirements) · 1 X Monitor 24” · 1 X Simulator Pc · Intel Core I5-14500 3.3 Ghz Or Above · 16 Gb Ram · 256 M.2 Ssd · Rtx 4070 Or Higher · Window 10/11 Pro 64 Bit · Ups 1.5kva A. Surge Protection B. W/ Automatic Voltage Regulator · Keyboard With Trackball F. Gmdss Console With Trainee Workplace Software (minimum Requirements) · 1 X Monitor 24” · Simulator Pc · Intel Core I5-14500 3.3 Ghz Or Above · 16 Gb Ram · 256 M.2 Ssd · Window 10/11 Pro 64 Bit · Ups 1.5kva A. Surge Protection B. W/ Automatic Voltage Regulator · 1 X Handset With Cradle And Ptt Switch · 1 X Usb Audio Unit · Keyboard W/ Mouse Or Touchscreen Pc G. Overhead Panel Display (minimum Requirements) · 1 X Monitor 24” Mounted · Simulator Pc · Intel Core I5-14500 3.3 Ghz Or Above · 16 Gb Ram · 256 M.2 Ssd · Window 10/11 Pro 64 Bit · Keyboard/mouse · Ups 1kva A. Surge Protection B. W/ Automatic Voltage Regulator H. 1 X Intercom Ip Telephone · 2 Sip Lines · Hd Audio With Wideband Codec, G.722 · 10-speed Dial Keys, 1 Programmable Dss Key · 3-way Conference · Desk/wall-mounted · Handset/hands-free Mode · 10/100 Mbps · Poe/power Adaptor · White Color I. 1 X Chart Table At Least 1000mm X 700mm And Plotting Aids (minimum Requirements) · 1 X Monitor 24” · Computer · Intel Core I5-14500 3.3 Ghz Or Above · 16 Gb Ram · 256 M.2 Ssd · Rtx 4070 Or Higher · Window 10/11 Pro 64 Bit · Ups 1kva A. Surge Protection B. W/ Automatic Voltage Regulator · 1 X Gooseneck Dimmable Light · Keyboard W/ Mouse · 1x Parallel Ruler · 1x One-hand Compass Divider Steel · 2x Plotting Triangle With Handle · 1x Chart Table At Least 1000mm X 700mm · 1x Deck Log Book · 1x Night Order Book · 1x Bell Book · 1x Chronometer J. 1 X Speakes (minimum Requirements) · Interface With Visual Pc · Realization Of 3d Sound Effect System · Atleast 150 Watts Speaker With Subwoofer · Port: Mini Jack 1 Set 4.3 Bridge Instructor Station A. Instructor Station I. 1 X Computer (minimum Requirements) 1. 2x 24” Monitor 2. Intel Core I5-14500 3.3 Ghz Or Above 3. 16 Gb Ram 4. 256 M.2 Ssd 5. Rtx 4070 Or Higher 6. Keyboard/mouse 7. Window 10/11 Pro 64 Bit 8. Ups 1.5kva A. Surge Protection B. W/ Automatic Voltage Regulator Ii. 1 X Gmdss Console With Instructor Workplace Software · 1 X Monitor 24” · Simulator Pc · Intel Core I5-14500 3.3 Ghz Or Above · 16 Gb Ram · 256 M.2 Ssd · Windows 10/11 Pro 64 Bit · Ups 1.5kva A. Surge Protection B. W/ Automatic Voltage Regulator · 1 X Handset With Cradle And Ptt Switch · 1 X Usb Audio Unit · Keyboard W/ Mouse Or Touchscreen Pc · 1 X Desktop Speaker Iii. 1 X Speaker 1. Type: Desktop 2. Port: Mini Jack Iv. 1 X Steel Cabinet W/ Lock 1. Metal Drawer Office Drawer 2. File Cabinet Storage With Wheel V. 1x Drone View Monitor W/ Smart Tv 55” Tv Led (environment View Of Instructor) Vi. 1x Printer 1. Laser Printer A4 2. A4 Print Speed Up To 48 Ppm 3. Auto 2-sided (duplex) Printing, 1-line Lcd 4. Wifi, Airprint, Mopria, Wifi Direct, Lan, Usb 2.0 5. Colored Printer Vii. Instructor Station Table Specification: 1x Table Size: At Least L 1700 X W 700 X H 750 Mm - Material: Formica Matt Laminate On Chipboard Viii. 1 X Intercom Ip Telephone · 2 Sip Lines · Hd Audio With Wideband Codec, G.722 · 10-speed Dial Keys, 1 Programmable Dss Key · 3-way Conference · Desk/wall-mounted · Handset/hands-free Mode · 10/100 Mbps · Poe/power Adaptor · White Color Ix. 9x Two-way Uhf Radiotelephone (walkie-talkie) With Charging Connection X. 1x Ergodynamic Chair Xi. 1x Document Metal Cabinet With Glass Sliding Door 1. Size: 1850x 400mmx 900mm 2. Door Lock Xii. Plotting Aids · 5 X Parallel Ruler · 5 X One-hand Compass Divider Steel · 10 X Plotting Triangle With Handle Xiii. All Computers Run On Windows (license) Xiv. Together With The Student Workstations It Forms A Complete Simulator Computer System 1 Set 4.4 Bridge Simulator Scenario Development Station A. Scenario Development Station As An Instructor Station Capable Of Deploying Scenarios To Other Stations. I. 1x Computer (minimum Requirements) 1. 2x 24” Monitor 2. Intel Core I5-14500 3.3 Ghz Or Above 3. 16 Gb Ram 4. 256 M.2 Ssd 5. Rtx 4070 Or Higher 6. Keyboard/mouse 7. Ups 1.5kva A. Surge Protection B. W/ Automatic Voltage Regulator Ii. 1x Table Size: At Least L 1200 X W 800 X H 750 Mm Material: Formica Matt Laminate On Chipboard Iii. 1x Ergodynamic Chair B. Virtual Shipyard And Modelling Services Software 1. 2x 24” Monitor 2. 1x Computer A. Intel Core I5-14500 3.3 Ghz Or Above B. 32 Gb Ram C. 256 M.2 Ssd D. Rtx 4070 Or Higher E. Keyboard/mouse F. Ups 1.5kva 1. Surge Protection 2. W/ Automatic Voltage Regulator 3. 1xscene Editor 4. 1xvisual Model Editor 5. 1xvirtual Shipyard 2 6. 1x3dsmax Subscription (min. 5 Years) 5. Software Requirements 5.1 Full Mission Bridge Simulator The Full Mission Bridge Simulator Shall Have The Following Software And Controls For The Following Workstations: A. Workstation For Navigating, Maneuvering And Monitoring Consisting: · One (1) Ecdis Master Software · One (1) Ecdis Slave Software · One (1) Conning Display Software · One (1) Radar/arpa 3cm · One (1) Radar/arpa 10cm · Nine (9) Realistic Visualization Software With 270° Field Of View · Keyboard And Trackball Controls For Ecdis, Radar Apra And Conning Display · Two (2) Vhf Dsc Radio W Ch16 · One (1) Overhead Panel Display · One (1) Main Engine Telegraph Including Emergency Stop Control With Printer · One (1) Bow And Stern Thruster Control · One (1) Gps Software · One (1) Bridge Navigational Watch Alarm System (bnwas) · One (1) Echo Sounder · One (1) Speed Log · One (1) Vr Binoculars Or Equivalent · One (1) Observer Position/ Visual Control · One (1) Anchor Gear And Mooring Operations Control · One (1) Towing Control · One (1) Tugs Control · One (1) Autopilot Control System · Nfu/ Fu Controls · One (1) Tiller Controls · One (1) Information On Ship Automatic Identification System (ais) · One (1) Intercom Telephone Capable For Public Address System · One (1) Conference Microphone · One (1) Control For Searchlight · One (1) Gyro Repeater/pelorus Stand That Can Display Magnetic And Gyro Compass · One (1) Bearing Finder · One (1) Alarm System Panel For General Alarm, Fire Alarm, And Other Alarms · Navigation Lights Control · Flags, Daytime Shapes And Sound Signals Control · One (1) Two-way Uhf Radiotelephone (walkie-talkie) With Charging Connection · Sound Reception System · Acknowledgment Of The Watch Alarm · Information Indicators For: - Propeller Revolutions (actual And Desired) - Main Engine Rpm - Main Engine Revolution In The Case Of Reduction Geared Engine - Propeller Pitch In The Case Of Controllable Pitch Propeller - Torque - Starting Air - Lateral Thrust - Log Speed And Speed Over The Ground - Bow And Stern Speed - Athwartship Speed - Rudder Angle - Rate-of-turn - Gyro Compass Heading - Magnetic Compass Heading - Heading Reminder (pre-set Heading) - Water Depth Including Depth Warning Adjustment - Vessel Time - Wind Direction And Velocity - Air And Water Temperature - Clinometer - Alarms - Pilot Card - Maneuvering Characteristics - Scoring Exercise/ Assessment · Signal Transmitter For: - Whistle - Automatic Device For Fog Signals - Alarms, (general Alarm, Emergency Alarm, Etc.) - Morse Signaling Light B. Workstation For Manual Steering (wheelhouse) Consisting Of: · One (1) Steering Wheel · Rudder Pump Selector Switch · Steering Mode Selector Switch · Steering Position Selector Switch · Indications For: - Gyro Compass Heading - Magnetic Compass Heading - Pre-set Heading - Rudder Angle - Rate Of Turn - Steering Mode (fu/nfu) – Track Control/auto Navigation C. Workstation For Route Planning And Documentation Consisting Of: · Computer For Route Planning Devices (ecdis) · Chart Table With Drawers For Paper Charts, Flags And Pennants · Paper Charts · Plotting Aids · Chronometer · Weather Facsimile D. Workstation For Communications Consisting Of: · One (1) Handset For Radiotelephone · Gmdss Trainee Workplace Software · Vhf-dsc, Radiotelephone · Mf-dsc, Radiotelephone · Mf/hf-dsc, Nbdp, Radiotelephone · Mf/hf Mf/hf Radio Telex · Inmarsat-ses, Egc Rx With Lrit And Ssas · Navtex/egc/hf Direct Printing Telegraph · Fbb/iridium · Cospas-sarsat Epirb · Sart · Ais Sart · Main Station For Two-way Vhf Radiotelephone · Aircraft Vhf Radiotelephone · Gmdss Alarm Panel · Radio Direction Finder Rt-500-m (marine) · Power Switchboard · Battery Charger · Virtual Printer 5.2 Mini Bridge Simulator The Mini Bridge Simulators Shall Have Each Of The Following Software And Controls For The Following Workstations: A. Workstation For Navigating, Maneuvering And Monitoring Consisting: · One (1) Ecdis Master Software · One (1) Conning Display Software · One (1) Radar/arpa Interchangeable To 3cm & 10cm · Three (3) Realistic Visualization Software With 120° Field Of View · Keyboard And Trackball Controls For Ecdis, Radar Apra And Conning Display · One (1) Vhf Dsc Radio W Ch16 · One (1) Overhead Panel Display · One (1) Main Engine Telegraph Including Emergency Stop Control With Printer · One (1) Bow And Stern Thruster Control · One (1) Gps Software · One (1) Bridge Navigational Watch Alarm System (bnwas) · One (1) Echo Sounder · One (1) Speed Log · One (1) Vr Binoculars Or Equivalent · One (1) Observer Position/ Visual Control · One (1) Anchor Gear And Mooring Operations Control · One (1) Towing Control · One (1) Tugs Control · One (1) Autopilot Control System · Nfu/ Fu Controls · One (1) Tiller Controls · One (1) Information On Ship Automatic Identification System (ais) · One (1) Intercom Telephone Capable For Public Address System · One (1) Conference Microphone · One (1) Control For Searchlight · One (1) Bearing Finder · One (1) Alarm System Panel For General Alarm, Fire Alarm, And Other Alarms · Navigation Lights Control · Flags, Daytime Shapes And Sound Signals Control · One (1) Two-way Uhf Radiotelephone (walkie-talkie) With Charging Connection · Sound Reception System · Acknowledgment Of The Watch Alarm · Information Indicators For: - Propeller Revolutions (actual And Desired) - Main Engine Rpm - Main Engine Revolution In The Case Of Reduction Geared Engine - Propeller Pitch In The Case Of Controllable Pitch Propeller - Torque - Starting Air - Lateral Thrust - Log Speed And Speed Over The Ground - Bow And Stern Speed - Athwartship Speed - Rudder Angle - Rate-of-turn - Gyro Compass Heading - Magnetic Compass Heading - Heading Reminder (pre-set Heading) - Water Depth Including Depth Warning Adjustment - Vessel Time - Wind Direction And Velocity - Air And Water Temperature - Clinometer - Alarms - Pilot Card - Maneuvering Characteristics - Scoring Exercise/ Assessment · Signal Transmitter For: - Whistle - Automatic Device For Fog Signals - Alarms, (general Alarm, Emergency Alarm, Etc.) - Morse Signaling Light B. Workstation For Manual Steering (wheelhouse) Consisting Of: · One (1) Steering Wheel · Rudder Pump Selector Switch · Steering Mode Selector Switch · Steering Position Selector Switch · Indications For: - Gyro Compass Heading - Magnetic Compass Heading - Pre-set Heading - Rudder Angle - Rate Of Turn - Steering Mode (fu/nfu) C. Workstation For Route Planning And Documentation Consisting Of: · Computer For Route Planning Devices (ecdis) · Chart Table With Drawers For Paper Charts, Flags And Pennants · Paper Charts · Plotting Aids · Chronometer D. Workstation For Communications Consisting Of: · One (1) Handset For Radiotelephone · Gmdss Trainee Workplace Software · Vhf-dsc, Radiotelephone · Mf-dsc, Radiotelephone · Mf/hf-dsc, Nbdp, Radiotelephone · Mf/hf Mf/hf Radio Telex · Inmarsat-ses, Egc Rx With Lrit And Ssas · Navtex/egc/hf Direct Printing Telegraph · Fbb/iridium · Cospas-sarsat Epirb · Sart · Ais Sart · Main Station For Two-way Vhf Radiotelephone · Aircraft Vhf Radiotelephone · Gmdss Alarm Panel · Radio Direction Finder Rt-500-m (marine) · Power Switchboard · Battery Charger · Virtual Printer 5.3 Bridge Instructor Station A. The Instructor Workstation Is An Integral Part Of The Simulator And Is Designed To Control The Training Complex, Design (develop) Exercises, Perform Exercises In Real Time, Control Exercise Performance By Trainees, Change Environmental Conditions And Sailing Circumstances, As Well As Enter Own Ship Failure Variables, Document, And Archive The Position And Activity Of The Ship Involved In The Exercise. The Instructor Station Software Should Contain Navigation Areas As Well As Sub-tasks For Each Area, Allowing The Control Of All Active Vessels And Target Ships. B. Main Instructor Functionalities: · Change Position, Course And Speed Of Own Ship And Traffic Ships, Helicopters Etc. · Instructor Has Full Control Over All Objects Within The Exercise Including Mentioned Above. · Introduce Failures To Own Ship Instantly And As Pre-programmed Event (time And Position Dependent) · Weather Conditions And Failure Of Ships Can Be Preprogramed To Occur After A Certain Time, Allowing The Instructor To Create Complex Scenarios In Advance And Focus On The Trainees While Running The Exercise. · Set Sound And Navigation Signals For Traffic Ships, Helicopters Etc. · Sounds And Navigation Signals For The Traffic Ships And Helicopters Can Be Pre-set By The Instructor And Changed Further On. · Create Pre-programmed Routes For Traffic Ships, Helicopters Etc. · Any Number Of Routes Can Be Prepared And Stored Each Exceeding 50 Waypoints. · Do A ‘fast Forward’ To Quickly Test An Exercise · Several Fast Forward Modes Are Available – From X 2 To X 20. · Specify Environmental Conditions (e.g. In Fog It Must Be Possible To Set The Visibility To A Desired Range) · Full Control Over Environmental Conditions Is Available: For The Global Scene And For The Defined Local Condition Zone (with Predefined Visibilities And Other Factors). · Specify Hydrographic Conditions And Systems · Full Control Over Hydrographic Conditions And Other Systems Of The Objects Are Fully Controllable By The Instructor. C. Gmdss Instructor Workplace Software D. Simulator Software With Capabilities Such As Port Design And Planning, Fairways Design, Ship Modelling And Incident Investigation, Study Ship Operations In Restricted Water Conditions And Mooring Operations, Including Tug Operation. E. Navigation Instructor Software Includes: · Navigation Instructor · Evaluation And Assessment · Tug And Mooring · Radar/arpa · Electronic Navigational Chart: · Bird Eye Of Instructor · Debriefing System F. Simulator Session(s) Control: • Exercise(s) Start, Pause, Re-start After The Pause, Stop On Bridge(s); • Setting The Initial Position For Own Ships; • Entering Faults Of Navigation Systems, Steering Gear, Propulsion Plant, Fire And General Alarm; • Ability To Set Faults Of Navigational Equipment; • Pulling Apart Ships That Have Collided Or Run Aground; • Control Of Target Vessels, Hoisting Flags Of The International Code Of Signals, Turning Their Sound Signals On And Turning Their Lights On/off; G. The Software Modules Should Provide A Possibility To Flexibly Configure The Required Bridge Configuration. General: · An Integrated Application For Exercise Editing, Conducting And Debriefing; · Highly Accurate Data Representation Based On Vector Diagrams (ability To Automatically Load All Diagrams Related To The Selected Game Area); · Tools For Creating Exercises And Automatic Competency Assessment Scenarios; · Displaying Of The Actual Ship Contours; · Display Of Object Tracks: Contour Or Point With Selectable Resolution, Track History And Time Stamps; · Using The Mouse Wheel For Chart Scaling; · Control Of Simulator Session(s); · Continuous Automatic Recording Of Data During Exercise (main, Audio And Video Log Files); · Real Time, Slow Time, And Fast Time Modes; · Ability To Display And Print A New Pilot Card And A Table Of Maneuvering Characteristics Of The Ship; · Setting Parameters And Faults Of Navigation Equipment: Radar, Gps, Loran C, Log, Gyro, Echo Sounder, Uais; · Setting Weather And Bathymetric Conditions: Global And Local Zones, Import Of Tide And Current Databases (ecdis); · Working With Measuring Tools: - Ability To Set Erbl; - Ability To Attach, Move Or Delete Erbl During An Exercise; 9. Ability To Attach Sart To The Life Raft; H. Ability To Move Own Ship During Exercise Without Grounding Or Collision; I. Ability To Apply Virtual Tug Force To 8 Points Of The Vessel’s Hull In Any Direction; J. Display Of Actual Ship's Contours; K. Continuous Display Of Parameters Of Vessel Movement And Environment Conditions: Course And Speed Of The Vessel, Course Over The Ground, Transversal Component Of Speed On The Bow And On The Stern, Gyro Heading, Rate Of Turn, Speed And Direction Of The Current And Wind, Height And Direction Of A Wave, Depth; L. Independent Instructor Control For Wind And Swell Components Of The Wave; M. Ability To Set Sea State Spectrum: · Pierson-moskowitz; · Phillips; · Ittc (international Towing Tank Conference); · Jonswap (joint North Sea Wave Project); · User. N. Ability To Exclude Hydrodynamic Interaction With Mooring Walls In The Required Area; O. Ability To Create A Template Containing A Set Of Objects (ships), Save And Use This Template In Other Exercises; P. Ability To Save Environment Settings As A Template And Load A Previously Saved Template In Any Exercise And Area; Q. Mooring Operations: · Ability To Set The Rope Material; · Ability To Set The Initial State Of The Mooring Winch (render, Slack Away, Stop); · Ability To Set Mooring Winch Parameters (speed, Pulling Force, Holding Force); · Ability To Operate The Mooring Winch At The Instructor Workplace. R. Anchor Operations: · Ability To Set User Ground Type With Required Anchor Holding Force Coefficients; · Display Of Anchor Position On The Instructor's Chart On The Ground. S. Control Of Navigational Lights And Shapes: · Ability To Control The Navigational Lights; · Ability To Switch On/off Deck Lights On Target Ships. T. Loading/discharging Of Own Ship During Exercises; U. Weather Conditions Manager: · Ability To Set Predefined Weather Conditions By Beaufort Number (wind, Wave, Whitecaps And Foam, 3d Clouds, Cloud Layer, Visibility) On The Fly; · Ability To Set Customized Weather Conditions; · Visual Effects: Rain And Snow (low, Medium, High), Lightning, Reflection, Translucency, Sea With White Caps, Foam, Splashes, Bow-wave; · Separate Settings For Wind Wave And Swell; · Manual Control Of Wind Direction And Strength; · Adjustment Of Atmospheric Parameters – Temperature, Humidity, Pressure; · Ability To Use Thunderstorm, Precipitation; · Automatic Calculation Of The Position Of The Sun, Moon, Major Stars (up To 100) And Constellations, The Angle And Phase Of The Moon; · Ability To Set Wave Spectrum Type: Pierson-moskowitz; Jonswap (joint North Sea Wave Project); Phillips; User-defined; · Ability To Use Thunderstorm, Precipitation. V. Rcc, Ship And Coast Stating Assignment; W. Log Module With Possibility To Print Out And Create Archives; X. Window For Listening/monitoring Of The Radiotelephone Traffic Including Possibilities To Interfere With Radiotelephone Traffic; Y. Ability To Introduce Background Noise From A List And Instrument Faults To The Trainee Stations. Z. Ability To Change Names, Call Signs, Mmsi, Telex Numbers And Inmarsat Mobile Numbers Of All Emulated Ship Stations And Coast Station According To The Needs Of Different Exercises; Aa. Electronic Chart With Vessel Position Indication And The Ability To Change Position, Course And Speed; Bb. Ability To Display And Instantly Change Trainee Station Positions On The Electronic Map For Search And Rescue (sar) Exercises; Cc. Full Monitoring Of Any Trainee Workstation – The Ability To Monitor The Status Of Each Gmdss Unit And Listen To The Radio Traffic Of Each Trainee Station; Dd. Connection To An External Printer; Ee. Connection To An Active Speaker For Simultaneous Viewing Of Channels; Ff. Providing Functions Of A Coast Telex Or Telephone Subscriber, Coast Radio Station And Rcc Operator From The Log Window; Gg. Status Window For All Instruments At Any Workstation; Hh. Ability To Log Communication And Trainee Actions For Playback And Later Review; Ii. Database Of Coastal Stations, Navtex And Msi Stations And Inmarsat Shore-based Stations Plotted On The Chart; Jj. Information About The Gmdss Sea Areas On The Chart; Kk. Approximate Estimation Of Radio Wave Propagation In The Selected Frequency Range; Ll. Evaluation And Assessment Module; Mm. Navtex Functionality: · Ability To Send Navtex Messages On Behalf Of A Navtex Station; · Ability To Edit And Use The Navtex Station Used-defined List; · Ability To Save And Use Navtex Message Templates. Nn. “intercom” Panel. To Monitor Intercom Communication, Execute Voice Messages From The Instructor's Side. Oo. Vhf Radio Station Module. To Monitor Vhf Communication, Send Voice Messages From The Instructor’s Side, Play Pre-recorded *.wav Files. Pp. Coastal Radio Station Module. Screen Layout: Qq. Use Of The Mouse Wheel For Chart Centering And Scaling; Rr. On-screen Display Of Mooring Walls And Piers; Ss. On-screen Display Of Actual Contours Of Any Ship; Tt. On-screen Display Of The Object’s Route Line And Its Actual Track; Uu. On-screen Display Of The True And Relative Speed Vectors; Vv. Selectable Display Mode: True Motion, Relative Motion, Course Up Or North Up; Ww. Display Of Prompt And Other Information In The Status Bar: · Bearing And Distance From The Current Cursor On-chart Position To The Reference Point; · Coordinates Of The Current Cursor On-chart Position; · Depth In The Current Cursor Position; · Current Exercise Time (absolute And Relative). Xx. Displaying Of Object Tracks: Contour Or Point With Selectable Resolution, Track History And Time Stamp; Yy. Displaying Of Walls And Piers; Zz. Use Of A Mouse Wheel For Chart Centering And Scaling; Aaa. User Configurable Workplace; Bbb. Different Panels For The Control And Monitoring Of The Exercise Fulfillment: · Reports Panel – To Form And Print Exercise Fulfillment Reports; · Ship Info Panel – To Display Courses, Longitudinal And Transverse Speeds, Rates Of Turn For All The Ships Involved In The Exercise. · Evaluation And Assessment Module Panel; · Target Panel – To Control Vessel Target And Flight And Sar Objects; · Objects Panel – To Promptly Select An Object On The Chart From The List Of All The Objects Available In The Exercise; · Flags Panel – To Hoist/lower Ics Flag Signals On Any Of The Ships, Including Ability To Set And Keep Flag Templates · Events Panel – For The Automatic Recording Of Any Important Events Related To The Incorrect Trainee Actions; · Flash Light Panel – To Send Light Signals From Target Vessels, Including Automated Translation Into Morse Code; · Magnetic Deviation Panel – To Configure The Magnetic Deviation Panel For The Vessels, Participating In The Exercise, Save The Panel And Apply Desired Template To Any Own Vessel, Print The Magnetic Deviation Table; · Procedural Alarms Panel – For Defining User Set Of Alarm For Dedicated Vessels. Ccc. All Own-ship Models Available In The Database Of The Simulator (provided With Ice Class Models) Ddd. All Visual Exercise Areas Available In The Database Of The Simulator (provided With Polar Areas) Eee. All Ship Target Models Available In The Database Of The Simulator Fff. Setting Navigational Equipment Parameters And Faults: Radar, Gps, Loran C, Log, Gyro, Echo Sounder, Uais; Ggg. Setting The Exercise Weather And Bathymetric Conditions: Global And Local Zones, Import Of Tide And Current Databases; Hhh. Observing Own Ships And Targets On The Chart: Ship Info Panel, Cpatcpa Panel, Events Panel; Iii. Control Of Own Ships And Targets On The Chart: Direct Control Of Steering And Propulsion Systems, Autopilot, Mooring Lines, Anchors; Jjj. Setting Faults Of Navigational Equipment, Steering And Propulsion System, Fire And General Alarms; Kkk. Continuous Data Logging During Exercises; Lll. Playback Of Recorded Exercises In Real And Fast-time Modes; Mmm. Performing Preliminary Exercises On The Map To Check Their Suitability For Training On The Simulator; Nnn. Distress Signals (flare, Smoke Signals, Dye Markers); Ooo. Adding New Target Ships; Ppp. Changing Weather Conditions; Qqq. Moving Buoys, Turning Off Lights On Them And Hiding Them On Both The Visualization System And Radar; Rrr. Control Of Automatic Tugboats On Commands From The Bridge Or From The Instructor; Sss. Generating And Printing Exercise Reports 5.4 Simulator Scenario Development Station 1. The Simulator Scenario Development Station Shall Be Integrated With All Engine Stations And Instructor Stations, And Can Act As An Instructor Station Capable Of Deploying Scenarios To Other Stations (bridge And Engine) 2. The Simulator Scenario Development Station Shall Have The Same Software And Control Capabilities As The Instructor Station. (see Section A 5.5.3) 3. Inside The Simulator Scenario Development Room Shall Have A Separate Station With Software Dedicated For Virtual Shipyard And Modelling Services With Capabilities For Port Design And Planning, Fairways Design, Ship Modelling And Incident Investigation, Study Ship Operations In Restricted Water Conditions And Mooring Operations, Including Tug Operation. It Shall Act As A Platform To Get Used To New Interfaces During Sea Trials. The Software Shall Allow The Designed Own Ship Models And Exercise Areas To Be Loaded Onto The Bridge Simulator. B. Full Mission Engine Room Simulator (fmers) And Mini Er Stations’ Features And Applications, Major Components And Engine Room Simulator Performance Standards 1. Major Components The Full Mission Engine Simulators That Can Be Integrated With Bridge Simulators Shall Consist Of The Following Major Components: A. One (1) Full Mission Engine Room Station (class A Configuration) B. Ten (10) Mini Engine Room Stations (class C Configuration) C. One (1) Server Station D. One (1) Instructor Station E. One (1) Simulator Scenario Development Station F. One (1) Briefing/ Debriefing Station 2. Features And Applications 2.1 The Man Electronic Engine Model Simulates A Suez Max Crude Oil Carrier With A Man Slow Speed Turbo Charged Diesel Engine As Propulsion Unit Modeled With Fixed Propeller. The Main Engine Models Respond Dynamically To Variations In Operation And Conditions Of The Ship Model, And The Ship Models Have Mutual Responses To The Main Engine Models. The Model Is Based On Real Engine Data That Makes The Dynamic Behavior Of The Simulator Close To Real Engine Response. In Addition To The Man Engine, The Vessel Has An Electrical Power Plant Including Three 1125 Kva Diesel Generators And One 250 Kva Emergency Generator. The Steam Plant Includes Two D-type Steam Boilers And One Composite Boiler, 3 Cargo Turbines, Condensing And Feed Water Systems. Control Room Operator Station, Bridge And Steering Panels Are Included. The System Shall Also Be Connected To The High Voltage Engine Simulator. 2.2 The Simulator Engine Models Comply With The Requirements In The Stcw Convention, Regulation 1/12 And Fulfill The Standards Of An Internationally Recognized Classification Society For Maritime Simulator Systems. 2.3 The Simulator Engine Models Shall Include But Not Limited To Rt-flex, Me, Mc, De-df, Xdf Or Equivalent, And Future Fuel Such As But Not Limited To Methanol And Ammonia For Modern Engine Systems. 2.4 The Engine Model Main Specifications High Fidelity Engine Room Systems Shall Include: - Sea & Lt/ht Fresh Water Systems, Incl. Fw Generator - Electrical Power Plant, Incl. Diesel Generators And Power Management - Start & Service Air Compressors, Incl. Compressor Intermediate Coolers And Emergency Compressor - Integrated Automation System, Incl. Vessel Performance Monitor - Steam Plant Incl. D-type Oil Fired Boilers And Combined Exhaust/oil Fired Boiler - Diesel/heavy Fuel/oil Systems, Incl. Hfo, Lshfo And Mdo Tanks, Separators, Viscometers - Lubricating Oil Systems, Incl. Separator - Stern Tube Systems - Steering Gear - Main Engine Control System (man) - Main Engine Remote Control System (ac 600) - Main Engine Maneuvering System - Main Engine Hydraulic Oil System - Main Engine Hydraulic Cylinder Units System - Cylinder Indication Diagrams - Air Ventilation System - Bilge Wells & Bilge Separator - Sewage Treatment Plant - Incinerator Plant - Inert Gas System - Ballast Water Treatment System - Refrigeration System - Ship Loading System - Fire Detection System - Fire Fighting System - Fresh Water Production - Bilge Water And Bilge Separator System - Air Ventilation System - Exhaust Scrubber - Sewage Treatment System - Incinerator System - Mooring Winch - Exhaust And Oil Fired Boilers - Air Condition Plant - Inert Gas System - Remote Co2 Release, Emergency Stops And Quick Release Valves - Emission Control System (water Scrubbing And Me Low Nox Mode) - Future Fuel Such As But Not Limited To Methanol And Ammonia For Modern Engine Systems. 2.5 The Engine Simulator Product Shall Be Able To Address The Following Stcw Competencies And Shall Be Reflected In The Certificate: · Table A-iii/1.1 – Maintain Safe Engineering Watch · Table A-iii/1.3 – Used Of Internal Communication Systems · Table A-iii/1.4 – Operate Main And Auxiliary Machinery And Associated Controls · Table A-iii/1.5 – Operate Fuel, Lubrication, Ballast And Other Pumping Systems And Associated Control Systems · Table A-iii/1.6 – Operate Electrical, Electronic And Control Systems · Table A-iii/2.5 – Manage Operation Of Electrical And Electronic Control Equipment · Table A-iii/1.11 – Maintain Seaworthiness Of The Ship 2.6 Interface To Engine Room High Voltage System - The Engine Room Model Will Be Interfaced To A Corresponding High Voltage Simulator And Gas Turbine Installed In The Academy. 3. Engine Room Simulator Performance Standards 3.1 Physical Realism The Engine Simulator Stations Shall Have The Following Physical Realism: A. Equipment And Consoles Shall Be Installed, Mounted, And Arranged In A Ship-like Manner B. The Control Room Consoles Shall Include Control And Monitoring Of The Main Engine, Auxiliary Engines And Electrical Power Generation, Steam Boiler, Pump, Compressors And All Other Alarms. C. The Remote Monitoring And Control Systems Shall Be In Compliance With The Functional Requirements Of The Classification Societies For Periodically Unattended Machinery Spaces. D. The Main Engine Remote Control Console Shall Include Command Functions And Status Indication Normally Found On Board Ships. E. The Electric Power Generation Shall Be Under Automatic Or Manual Control. Such System Should Be Able To Constantly Monitor Demand And Supply. When Deviation From Pre-set Limits Arises, The System Should Be Able To Act In Order To Normalize The Situation. The System Shall Also Perform Continuous Control Of The Frequency And Load Sharing. F. The Electric Power Supply System Shall Be Operated Either From The Switchboard Or The Power Management System. - Remote Start/stop Of Auxiliary Diesel Generators - Operation For Shaft Generator - Connect/ Disconnect Of All Generators - Automatic And Priority Selection - Non-essential Systems Trip - Constant Frequency Mode - Different Control Modes Of Load Sharing G. The Main Switchboard Shall Be A Full Scale Model Of A Typical Switchboard, And Comprise The Necessary Controls And Indicators Usually Available Of Real Generators. H. The Remote Control And Automation System Must Include Control Of The Following Equipment: - Me Lubricating Oil Pumps - Me Fresh Water Cooling Pumps - Me Sea Water Cooling Pumps - Me Auxiliary Blowers - Fuel Oil System And Pumps - Air Compressors - Steering Gear Pumps - Fire Pump Each Of The Above Individual Units Shall Allow Manual Start And Stop From The Control Room Consoles. It Shall Also Be Possible To Use Automatic Start And Stop Where Applicable. I. The Alarm Monitoring System Shall Consist Of A Typical Shipboard Alarm System. J. An Alarm Shall Be Announced By Sound And By Flashing Light In The Control Room. K. A Printer Or A Computer In The Engine Room Control Shall Be Used As An Alarm Log And Event Log. L. “dead Man Alarm System” The Simulator Shall Have The Following Additional Requirements For Low Speed Engine: M. The Simulated Engine Room Shall As A Minimum Reflect Typical Machinery Found On Merchant Ships. The Following Main Components Shall Be Simulated And All Necessary Sub-systems Included For A Low Speed Engine: - Main Engine Including Turbocharger System - 2 Auxiliary Diesel Generators - Lubrication Oil Separator - Steering Gear System - Fire Pump - Shaft Generator - Cooling Water System Including Freshwater Generation System - Turbo Generator - Fuel Oil Bunkering System - Fuel Oil Settling And Service Systems - 2 Heavy Fuel Oil Separators - 1 Diesel Oil Separator - Steam Generation Plant Including Exhaust And Oil-fired Boilers - Diesel Oil And Heavy Fuel Oil Supply To Main And Auxiliary Engines - Main Engine Operation From Engine Room, Engine Control Room And Bridge - Turbocharger System - Air Ventilation System For Engine And Control Room - Bilge Water System Including Oily Water Treatment Systems - Stern Tube System - Deck Machinery Applicable To The Ship Model - Ballast System - Sewage Treatment System The Simulator Shall Have The Following Additional Requirements For Medium And High Speed Engine: N. The Simulated Engine Room Shall Consist Of Typical Machinery Found On Merchant Ships. The Following Main Components Shall Be Simulated And All Necessary Sub-systems Included For A Medium And High Speed Engine: - One Or More Main Engines - Main Sw System - 2 Auxiliary Engines - Fuel Oil Tanks - Fuel Oil Separator - Lubrication Oil Separator - Main Engine(s), Including: • Fresh Water System • Lubrication System • Turbocharger System • Me Sw System - Reduction Gear System - Controllable Propeller Pitch Were Applicable - Steam Generation System As Applicable - Freshwater Generator - Bilge Wells And Bilge Separation System - 2 Air Compressors - Steering Gear System - Fire Pump - Electrical Power Plant - Deck Machinery Applicable To The Ship Model - Ballast System - Sewage Treatment System The Simulator Shall Have The Following Additional Requirements For Machinery Spaces: O. The Simulated Machinery Spaces Shall At Least Include One Dedicated Room For This Purpose. P. At Least The Following Main Components Of The Machinery Spaces Shall Be Graphically Presented Or Represented By Mock-ups Or In Realistic Visualization (to Illustrate Physical Presence) In The Simulated Machinery Spaces: - Main Engine - Auxiliary Diesel Generators - Steam Boiler - Fire Pump Q. The Facilities For Local Operation In The Simulated Machinery Spaces Shall Consist Of Local Operating Stations For Each System. Each Station Shall Be Furnished With Start/stop (open/closed) Buttons And Status Lights, Various Numbers Of Pressure -, Temperature Indicators, Etc. The Local Operating Stations Shall At Least Give Means To Operate The Following: - Main Engine (me) - Me Lubricating Oil Systems Including Separator - Me Fresh Water Cooling System - Me Sea Water Cooling System - Me Auxiliary Blowers - 2 Auxiliary Diesel Generators - Steam Boiler - Fuel Oil System (diesel And Heavy Fuel Oil) Including Separator - 2 Air Compressors - Steering Gear System - Bilge Water System - Fire Pump R. All Valves Typically Associated With The Operation Of Above Machinery May Be Operated At The Computer Screen In A 3d Visual Form Or Mouse Operated By The Candidate. S. Internal Communication System. 3.2 Behavioral Realism The Engine Simulator Stations Shall Have The Following Behavioral Realism: A. The Simulator Models Shall Be Able To Replicate The Dynamic Behaviour Of The Machinery Systems And All Its Visual Parameters As Well As The Interactions Between The Sub-systems. B. The Simulator Models Shall Simulate The Engine Room Components With Their Procedures, As Well As Modelled Controller Systems (sensors, Controllers, Actuators, And Valves) Connected To The Processes. C. When Simulating Real Equipment The Behaviour Of Such Simulated Equipment Should Behave As Identical Aw Possible As The Original. Critical Parameters Of The Behaviour Shall Be Documented D. The Simulator Model Shall Make Applicable Controllers Available And Adjustable With Regards To Pid (proportional-integral-derivative Controller) Parameters. E. The Simulator Model Shall Provide Facilities To Allow The Injection And Resetting Of Malfunctions At Appropriate Times During Operation As Necessary. F. It Shall Be Possible To Simulate Change In Seawater Temperature And Demonstrate How This Affects The Complete Simulation Model. G. It Shall Be Possible To Simulate A Change In Air Temperature And Demonstrate How This Affects The Complete Simulation Model. H. The Simulator Shall Have All Heat Exchangers Available And Adjustable With Regards To Their Parameters (heat-transfer Factor, Heat Dissipation Area Etc.) I. The Simulator Shall Make All Pumps Available And Adjustable With Regards To Their Parameters (pump Capacity, Wear, Etc.) 3.3 Operating Environment The Engine Simulator Stations Shall Have The Following Operating Environment: A. It Shall Be To Adjust The Noise Level In The Simulated Machinery Spaces Infinite From No Added Noise Up To Minimum 100 Db(a). The Noise Shall Have A Frequency Distribution Typical For Machinery Spaces. Headset Is Provided For Each Workstation. B. It Shall Be Possible To Simulate The Sea Water Temperature At Least Infinite Between +1ºc And +30 ºc. 4. Hardware Requirements 1 Set 4.1 Full Mission Engine Room Simulator A. Engine Control Room Consoles I. Ecr Pump Compressor And Power Management Console 1. 1 X Console 2. 1 X Computer A. Intel Core I5-14500 3.3 Ghz Or Above B. 16 Gb Ram C. 256 M.2 Ssd D. Window 10/11 Pro 64 Bit E. Ups 1.5kva I. Surge Protection Ii. W/ Automatic Voltage Regulator 3. 2 X 24 Touch Screen Monitors Ii. Ecr2 Alarm, Monitoring And Remote-control Console: 1. 1 X Console 2. 1 X Computer A. Intel Core I5-14500 3.3 Ghz Or Above B. 16 Gb Ram C. 256 M.2 Ssd D. Window 10/11 Pro 64 Bit E. Ups 1.5kva I. Surge Protection Ii. W/ Automatic Voltage Regulator 3. 1 X Keyboard 4. 1 X 24” Touch Screen Monitors 5. 1 X Industrial Tracker Ball Iii. Ecr3 Main Engine Remote Control And Indication Console 1. 2 X Console 2. 1 X Computer A. Intel Core I5-14500 3.3 Ghz Or Above B. 16 Gb Ram C. 256 M.2 Ssd D. Window 10/11 Pro 64 Bit E. Ups 1.5kva F. Surge Protection G. W/ Automatic Voltage Regulator 3. 3 X 24” Touch Screen Monitors 4. 1 X Speed Set Lever For Main Engine Remote Control And 5. Indication Console 6. Dead Man Alarm (dma) 7. Engineers Reset 8. Included Power Relay To Which Illumination In Engine Control Room And Engine Room Can Be Connected, Causing Lights In The Rooms To Go Out During A Blackout To Increase Realism. Iv. Simulated Cctv Touch Monitor 1. 1 X Computer A. Intel Core I5-14500 3.3 Ghz Or Above B. 16 Gb Ram C. 256 M.2 Ssd D. Window 10/11 Pro 64 Bit E. Ups 1.5kva I. Surge Protection Ii. W/ Automatic Voltage Regulator 2. 1 X 24 Monitor V. Internal Telephone At The Following Locations 1. Instructors Station 2. Engine Control Room 3. Engine Room 4. Emergency Generator Room Vi. Main Switchboard 1. 14 X At Least 24” Touch Screen Monitors 2. 7 X Computers A. Intel Core I5-14500 3.3 Ghz Or Above B. 16 Gb Ram C. 256 M.2 Ssd D. Window 10/11 Pro 64 Bit E. Ups 1.5kva I. Surge Protection Ii. W/ Automatic Voltage Regulator 3. 1 Set Of Speakers 4. Installed In A Switchboard Manner Vii. Engine Room Equipment 1. 4 X Virtual Walkthrough 2. 4 X High Resolution 55” Touchscreen Tv 3. 4 X Computer With Graphics Card A. Intel Core I5-14500 3.3 Ghz Or Above B. 16 Gb Ram C. 256 M.2 Ssd D. Rtx 4070 Or Higher E. Window 10/11 Pro 64 Bit 4. 4 X Controller Viii. Local Operating Station Console 1. 1 X Console 2. 1 X Computer A. Intel Core I5-14500 3.3 Ghz Or Above B. 16 Gb Ram C. 256 M.2 Ssd D. Window 10/11 Pro 64 Bit E. Ups 1.5kva I. Surge Protection Ii. W/ Automatic Voltage Regulator 3. 1 X Keyboard 4. 1 X 24” Touch Monitor 5. 1 X Industrial Tracker Ball Ix. Engine Room Sound 1. 1 X Sub Woofer 2. 4 X Satellite Speaker X. Alarm Horn And Lamp 1. 1 X Column With Lights And Sirens Xi. Emergency Generator Room 1. 1 X Virtual Walkthrough 2. 1 X High Resolution 55” Touchscreen Tv 3. 1 X Computer With Graphics Card A. Intel Core I5-14500 3.3 Ghz Or Above B. 16 Gb Ram C. 256 M.2 Ssd D. Rtx 4070 Or Higher E. Window 10/11 Pro 64 Bit F. Ups 1.5kva I. Surge Protection Ii. W/ Automatic Voltage Regulator 4. 1 X Controller 5. With Sound System B. 1x Intercom Voip Phone C. All Computers Must Be The Latest Generation This Includes Processors, Memory, Graphics Card And Storage. I. Monitors: Full Hd Resolution Ii. Storage: Solid-state Drive (ssd) Iii. Processor Generation: Must Be From The Latest Generation Of Processors Iv. Graphics: Integrated Graphics Dedicated Gpu If Needed. D. Touchscreens For Durability, Responsiveness, And Multi-touch Support. E. Each Computer Must Be Paired With A Ups Unit Rated For At Least 1.5 Kva And Automatic Voltage Regulation To Handle Voltage Fluctuations. F. B1489:c1503full Mission Simulator Model Contains Large+c1486 Inter Active Mimic Panels Used For Touch Screen Operation. Panel Diagrams Are Based On The Simulated Plants Pipe Line Configuration And Local Control Panels Drawings And Represent The Systems In The Local Side Of The Machinery Spaces. G. Simulated Hardware Panels (shp) Touch Screens H. Full Mission Simulator Model Contains Large Inter Active Mimic Panels Used For Touch Screen Operation. Panel Diagrams Are Based On The Simulated Plants Pipe Line Configuration And Local Control Panels Drawings And Represent The Systems In The Local Side Of The Machinery Spaces. 10 Sets 4.1 Mini Engine Room Simulator A. 1x Computer Specification (minimum Requirement) 1. Intel Core I5-14500 3.3 Ghz Or Above 2. 16 Gb Ram 3. 256 M.2. Ssd 4. Video Card 5. Keyboard/mouse 6. 2x At Least 24" Monitor (touchscreen) 7. Ups 1.5kva A. Surge Protection B. W/ Automatic Voltage Regulator B. 1x Table Size: At Least L 1200 X W 800 X H 750 Mm C. 1x Chair D. 1x Intercom Voip Phone 1 Set 4.2 Engine Instructor Station A. Instructor Station I. 1x Computer (minimum Requirements) 1. 3x 24” Monitor 2. Intel Core I5-14500 3.3 Ghz Or Above 3. 16 Gb Ram 4. 256 M.2 Ssd 5. Keyboard/mouse 6. Ups 1.5kva A. Surge Protection B. W/ Automatic Voltage Regulator B. 1x Speaker 1. Type: Desktop 2. Port: Mini Jack C. 1x Steel Cabinet W/ Lock 1. Metal Drawer Office Drawer 2. File Cabinet Storage With Wheel D. 1x Printer 1. Laser Printer A4 2. A4 Print Speed Up To 48 Ppm 3. Auto 2-sided (duplex) Printing, 1-line Lcd 4. Wifi, Airprint, Mopria, Wifi Direct, Lan, Usb 2.0 5. Colored Printer E. 1x Intercom Voip Phone 1. 1x Microphone F. Instructor Station Table Specification: G. 11x Two-way Uhf Radiotelephone (walkie-talkie) With Charging Connection H. 1x Table Size: At Least L 1700 X W 700 X H 750 Mm 1. Material: Formica Matt Laminate On Chipboard I. 1x Ergodynamic Chair J. 1x Document Metal Cabinet With Glass Sliding Door 1. Size: 1850x 400mmx 900mm 2. Door Lock K. All Computers Run On Windows 10/11 Pro 64 Bit (license) 1 Set 4.3 Engine Simulator Scenario Development Station A. Scenario Development Station As An Instructor Station Capable Of Deploying Scenarios To Other Stations (bridge And Engine) 1. 1x Computer (minimum Requirements) 2. 2x 24” Monitor 3. Intel Core I5-14500 3.3 Ghz Or Above 4. 16 Gb Ram 5. 256 M.2 Ssd 6. Rtx 4070 Or Higher 7. Keyboard/mouse 8. Ups 1.5kva A. Surge Protection B. W/ Automatic Voltage Regulator B. 1x Table Size: At Least L 1200 X W 800 X H 750 Mm I. Material: Formica Matt Laminate On Chipboard Ii. 1x Ergodynamic Chair 1. Software Requirements 5.1 Full Mission Engine Room Simulator The Full Mission Engine Room Simulator Shall Have The Following Software And Controls: · Main Engine Control · Main Engine Remote Control · Power Management System · Emergency Generator · Main Engine Telegraph Including Emergency Stop Control With Printer · Main Air Compressor And Starting Air System · Composite Boiler And Feed Water System · Economizer · Marine Growth Preventive Device (mgpd) · Incinerator Unit · 15 Ppm Bilge Separator And Odm · Local Fire Fighting System For Machinery Space · Fuel Oil And Lube Oil Purifiers · Fuel Oil And Diesel Oil Flow Meter · Auto Back Wash Filter · Oil Mist Detector · Electrical Power Supply · Electrical Lighting System · Fresh Water Generator · Sewage Treatment Plant · Viscosity Meter · Emergency Fire Pump · Main Engine Scavenging Air Cooler · Main Engine Turbocharger · Dead Man Alarm · Air Condition System · Refrigeration System · Ballasting System · Bunkering Operation · Fuel And Diesel Oil Transferring · Heat Exchanger · Stern Tube Bearing And Oil Seal Device · Tanks · Valves · Pumps · Information Indicators For: - Propeller Revolutions (actual And Desired) - Main Engine Rpm - Main Engine Revolution In The Case Of Reduction Geared Engine - Propeller Pitch In The Case Of Controllable Pitch Propeller - Main Air Reservoirs - Staring Air 5.2 Mini Engine Room Simulator The Mini Engine Room Simulator Shall Have The Following Software And Controls: · Main Engine Control · Main Engine Remote Control · Power Management System · Emergency Generator · Main Engine Telegraph Including Emergency Stop Control With Printer · Main Air Compressor And Starting Air System · Composite Boiler And Feed Water System · Economizer · Marine Growth Preventive Device (mgpd) · Incinerator Unit · 15 Ppm Bilge Separator And Odm · Local Fire Fighting System For Machinery Space · Fuel Oil And Lube Oil Purifiers · Fuel Oil And Diesel Oil Flow Meter · Auto Back Wash Filter · Oil Mist Detector · Electrical Power Supply · Electrical Lighting System · Fresh Water Generator · Sewage Treatment Plant · Viscosity Meter · Emergency Fire Pump · Main Engine Scavenging Air Cooler · Main Engine Turbocharger · Dead Man Alarm · Air Condition System · Refrigeration System · Ballasting System · Bunkering Operation · Fuel And Diesel Oil Transferring · Heat Exchanger · Stern Tube Bearing And Oil Seal Device · Tanks · Valves · Pumps · Information Indicators For: - Propeller Revolutions (actual And Desired) - Main Engine Rpm - Main Engine Revolution In The Case Of Reduction Geared Engine - Propeller Pitch In The Case Of Controllable Pitch Propeller - Main Air Reservoirs - Staring Air 5.3 Instructor Station 1. The Instructor Workstation Is An Integral Part Of The Simulator And Is Designed To Control The Training Complex, Design (develop) Exercises, Perform Exercises In Real Time, Control Exercise Performance By Trainees, Change Environmental Conditions And Sailing Circumstances, As Well As Enter Own Ship Failure Variables, Document, And Archive The Activity Of The Engine Involved In The Exercise 2. Engine Room Instructor, Monitoring, And Assessment System. 3. All Visual Exercise Areas Available In The Database Of The Simulator (provided With Polar Areas) 4. Changing Operational And Ambient Conditions 5. Setting Faults And Deteriorations, Single Or In Series 6. Simulate Leakages In Liquefied Lines And Tank Bulkheads 7. Resetting Faults 8. Logging Events And Alarms 9. General System Communication 10. Engine Room Simulator (ers) Includes Comprehensive Instructor Communication Links That Allow Him To: A. Pre-program And Store Situations B. Develop And Test New Training Programs C. Change Operational And Ambient Conditions D. Freeze Current Situations For Discussions And Clarifications With The Trainees E. Setting Of Single Faults Or Automatic Sequential Fault 11. Instructor Computer Functionality: A. All Configurations Includes Well Proven Models B. Load Simulation Model On Each Station C. Run Simulation D. Freeze Simulation E. Stop Simulation F. Load Initial Conditions G. Create New Initial Conditions H. Students Can Run The Simulation Independently I. Insertion Of Malfunctions J. Access To Alarm List K. Power-up All Student Stations L. Recording Of The Complete Exercise M. Replay The Whole Exercises N. Go Back To Any Point In Time For Restart O. Create Exercises Including Initial Conditions P. Deploy Exercises To Student Stations Q. Centralized Run/freeze Control Of All Student Stations R. Connect Student Stations In Clusters For Team Training S. Send Instant Messages To Student(s) T. Send Instant Actions (malfunctions Or Events) U. Recording Of The Complete Exercise V. Power Shut-down Of Student Stations W. Student Station (access) Configuration X. Exercise Development, Incl. Triggers And Actions Y. E-coach, Electronic Guidance System To Students Z. Assessment 12. Monitor And Control The Students In The Classroom (or Full Mission Simulator). Instructors Can Tailor The View According To The Site Layout. 13. Start Exercises In The Classroom 14. Run/pause Exercises In The Classroom 15. “client Connect” To Exercises In The Classroom 16. Set Up Groups For Team Training 17. New Exercise Structure A. Exercise Structure Comprises: Initial Condition And Scenario Modules Based On: I. Triggers Ii. E-coach Messages Iii. Actions Iv. Assessment B. Instructor-controlled Configuration For Each Of The Student Stations I. Configuration Of Stations Is Part Of The Exercise. It Is Possible To Add New Stations To An Ongoing Exercise “on The Fly” Trigger Overview C. Trigger Overview I. Displays The State (active/not Active) Of All The Triggers In The Module. Displays Users Of The Trigger (other Triggers, Actions, Assessment And E-coach Messages) Link To Editors Instructor Control Of Triggers (on The Fly). D. Logic Block Based Trigger Editor I. Building Block Used In Coach Messages, Actions And Assessments Graphical Editor Flexible And Powerful Calculates Output (true/false) Based On Input And Logic Blocks. Configurable Input. E. E-coach Overview I. Displays The State (sent/ Not Sent) Of All Coach Messages Link To Trigger And Message Editor Possible For The Instructor To Disable Messages. F. Action And Malfunction Editor I. Activated By Trigger: 1. Additional Triggers To Specify On/off Conditions For The Criterion 2. It Is Possible To Select Between Different Types Of Scoring (illustrated Graphically). It Is Possible To Define “critical” Criteria Malfunction Introduced As On/off. 3. The Instructor Can Freely Decide When And For How Long The Malfunction Shall Be Activated. 4. Malfunction Introduced Where Intensity And Duration Is Randomly Selected 5. Malfunction Introduced As A Repeating Sine Shape, Where Amplitude And Time Period Is Adjustable G. Assessment Overview I. Overview Of All Assessment Criteria Calculates Total Score Instructor Can Define Parameters For Overall Scoring Pass And Fail Evaluation Is Completely Based On Objective Criteria. 5.4 Simulator Scenario Development Station 1. The Simulator Scenario Development Station Shall Be Integrated With All Engine Stations And Instructor Stations, And Can Act As An Instructor Station Capable Of Deploying Scenarios To Other Stations (bridge And Engine) 2. The Simulator Scenario Development Station Shall Have The Same Software And Control Capabilities As The Instructor Station. (see Section B 5.5.3) 2 Sets A. Briefing/ Debriefing Station For Bridge And Engine A. 1x Computer (minimum Requirements) 1. 1 X Desktop Computer A. Intel Core I5-14500 3.3 Ghz Or Above B. 16 Gb Ram C. 500gb Ssd D. 1x Keyboard/mouse 2. 1x Ups 1kva 3. 1x Desktop Speaker 4. 1x W/ Computer Table Size: At Least L 1700 X W 700 X H 750 Mm 5. Briefing And Debriefing Rooms With Playback Capability (playing Of Recorded Exercise And Assessment In Simulator B. 1x Intercom Voip Phone C. 25x Chairs D. 1x Solid Round Table (at Least 6100 X 1220 Mm) (for Bridge Briefing/debriefing) I. (metal Legs With Laminate Board Or Solid Wood Table) E. 1x Solid Round Table (at Least 4880 X 1220 Mm) (for Engine Briefing/debriefing) I. (metal Legs With Laminate Board Or Solid Wood Table) F. 1x 65” Smartclassroom Interactive Tv I. Display: 65" 4k Uhd, 20-point Multi-touch, Anti-blue Light, Anti-glare Ii. Writing: Dedicated Stylus Pen, 25 Ms Latency, Multi-gesture Erasing Iii. Connectivity: Usb Type-c, Usb Type-a 3.0, Hdmi, Rj45 Iv. Projection: Hdmi/type-c Cable, Application V. System: Android And Windows Support Vi. Ai Features: Intelligent Collaboration, Interactive Teaching Vii. Accessories: Stylus Pens, Optional Ops Module, Rolling Stand, Wall-mounted Bracket, Viii. 10mters Hdmi Cable. Ix. Wide Angle Camera X. Interactive Teaching Endpoint G. 2x Bridge And 2x Engine) Hardware For Virtual Bridge Familiarization (minimum Requirements) 1. Display: A. Type: Lcd B. Resolution: 2064 X 2208 Per Eye C. Refresh Rate: 120 Hz D. Field Of View: E. Horizontal: 97 Degrees F. Vertical: 93 Degrees 2. Processor: A. Chipset: Qualcomm Snapdragon Xr2 Gen 2 3. Ram: 12gb 4. Storage: A. 128gb 5. Audio: 6. Hand Tracking: Improved Hand Tracking Capability 7. Controllers: A. Type: Meta Touch Pro Controllers B. Features: Haptic Feedback, Improved Ergonomics, Rechargeable Batteries 8. Battery: A. Headset: Approximately 2-3 Hours Of Active Use B. Charging: Usb-c Fast Charging 9. Connectivity: A. Wireless: Wi-fi 6e Support B. Bluetooth: 5.2 10. Inclusions: A. Headset B. Touch Pro Controllers (pair) C. Charging Cable (usb-c) D. Power Adapter W/ Extra 1 Battery Each E. Controller Lanyards F. Glasses Spacer Ii. Add On’s: 1. 2x Strap With Battery 2. 8x Silicone Cover Face Cover 3. 4x Silicone Protective Case 4. 8x Silicone Case For Controller 5. 3 Row Vr Storage Cabinet With Lock. H. The Virtual Reality Bridge Must Be Complete With Hotspots, Identification Tags And Descriptions. It Shall Also Be Available On An Offline System, Navigable. I. Playback Capability With The Following Functions: B. Loading A Previously Created Exercise On A Chart Or In Engine Room; C. Playing The Exercise To Explain The Task; D. Uploading A Sample Log Of The Same Exercise To Explain The Correct Actions. A. Virtual Bridge Familiarization W/ Virtual Reality Device The Vr System Aims To Simulate The Overhauling Process, Enabling Immersive, Hands-on Learning And Pre-assessment Without Direct Physical Intervention On The Engine. This Approach Will Enhance Technical Skills, Reduce Risk, And Improve Efficiency In Real-world Engine Maintenance And Overhauling. The Supplier Shall Provide A Virtual Bridge And Engine With The Use Of Virtual Reality Providing The Following Visualizations: 1. Bridge Wing Equipment 2. Speaker Mic 3. Rate Of Turn 4. Engine Rpm 5. Quick Release Lifebouy 6. Remote Panel 7. Gyro Compass Repeater 8. Fire Box 9. Hatch For Maintenance 10. Thermometer Ii. Main Bridge 1. Epirb 2. Sart 3. Clear View Screen 4. Location Of Fire Extinguishers 5. Pantry With Equipment 6. Pilot Chair 7. Smoke Detectors 8. Damage Control Plans 9. Radar 1 And 2 And 3 10. Gps With Other Equipment 11. Helm Wheel 12. Indicator Control 13. Deck Light Control 14. Admiralty And Other Maritime Publications 15. Fireplan 16. Rudder Angle Indicator 17. Voice Recorder 18. Whistle Horn 19. Water Tight Door Indicators 20. Window Wipers 21. Pa Systems 22. Cargo Hold Fan Control 23. Smoke Alarm System 24. Fire Alarm System 25. General Alarm System 26. Vhf System 27. Log Books And Other Documentation 28. Ecdis Voyage Planner 29. Pressure Recorder 30. Portable Uhfs 31. Lifejackets, Rocket Flare, And Rocket Line 32. Location Of Immersion Suits 33. Barometer 34. Utc Clock 35. Radio Room Configuration 36. Posters 37. Charts 38. Compass Deck / Monkey Island 39. Radar Equipment 40. Antennas 41. Anemometer 42. And Other Equipment On The Monkey Bridge Iii. The Me-b Main Engine Vr Overhauling System Cover The Following Features Full-scale, Interactive Models Allowing For A Detailed Exploration Of All Engine Components, Including: Iv. Connection Rod & Crosshead Assembly V. Stuffing Box Assembly Vi. Piston Assembly Vii. Cylinder Liner Assembly Viii. Cylinder Cover Assembly Ix. Exhaust Valve Assembly X. The Vr Simulation Guides Users Through Disassembling, Inspecting, And Reassembling The Exhaust Valve, Focusing On Critical Tasks Like Checking Valve Seats, Spindle Condition, And Wear On Sealing Surfaces. Users Can Also Simulate Tasks Such As Lapping The Valve, Inspecting Hydraulic Actuators, And Ensuring Proper Seating Of The Valve During Reassembly. 1 Set B. Server Station For Bridge And Engine A. 2x Set Computer (minimum Requirements) 1. Intel Xeon E5 -2620 2. 16 Gb Ram 3. 4x 500 Ssd 4. 2x 1gbit Network Card 5. Windows Server 2019/2022 R2 Standard 6. Rack Mounted B. 1x Nas And Exercise Server 1. 4 Bay Nas Disk Station Quadcore Processor 2. 4x 4 Tb Hdd C. 1 Pc Rack For All Tower Pc’s (visual) D. 2x Server Rack 1. Server Rack At Least 42u 2. W/ Fan 3. Power Strip And Shelves E. 1x Ups 1. 5kva (5kw) 2. Sealed Lead-acid (sla) Or Lithium-ion 3. Output Voltage: 230v Ac 4. Surge Protection 5. Stabilizes Incoming Voltage Without Switching To Battery Mode F. 2x Kvm Switch 1. 16-port Ps2 Usb Combo 2. Supports Vga, Svga, Hdmi 3. Mouse And Keyboard 4. Remote Monitoring Kit 1 Set D. Network And Cctv A. Network Switch 1. Manage Network Switch Specifications: 2. 4x 24 Ports 10/100/1000mbps Rj45 Ports Poe/poe+ 3. 1x 48 X 1ge Rj45 Ports, 4 X 10ge Sfp+ Ports, Poe/poe+ 4. 4x 10g Sfp Multimode Transceiver B. Network Access Point 1. 7x Dual-radio, Wi-fi 6 (802.11ax) A) 1 X 10/100/1000base-t Ethernet Port B) Combined Peak Data Rate Of 2.976 Gbps: C) 2.4 Ghz Band: Up To 574 Mbps D) 5 Ghz Band: Up To 2.402 Gbps E) Same Brand To The Existing Access Point C. Set Cctv Monitoring 1. 1x Nvr At Least 32 Channel 2. 25x 6 Mp Fixed Dome Network Camera With Mic 3. 4x 6 Mp Fixed Outdoor Network Camera 4. 3x 6tb Storage (design For Cctv) Ii. 2x Smart Tv 55” Tv Led For Cctv (bridge And Engine View) Iii. 2x Desktop Computer 1. Intel Core I5-14500 3.3 Ghz Or Above 2. 16 Gb Ram 3. 500gb M.2 Ssd 4. Ups 1.5kva 5. Keyboard And Mouse 6. 1 X Hdmi Cable 5 Mtrs 7. 1 X Desktop Speaker D. Network Requirements: I. 94x Lan Port Ii. 1x Lot: Of Upvc, Conduit, Pull Box, Fittings, Hanger, And Support And Other Materials If Needed. Including Utp Cat6 Shielded Pure Copper, Fiber Optic Cable, Patch Panels. Iii. Installation, Engineering Labor For Entire Project. Iv. Cable Laying, Labeling, Harnessing V. Mobilization And Di-mobilization Vi. All Cabling Will Be Endpoint At Server Room (back Of Full Mission Bridge Simulator) E. Structured Cabling Systems Standard I. Stations Must Include Lan Outlets And Patch Cords. Ii. Backbone Cabling Will Be Using The Cable Tray For Lan Distribution. Iii. Lan Outlets Must Have Network Labeling Iv. Patch Panels Are Required E. Information Display A. 1x 70” Information Board 4k 1. Operating System: Android 11+ Or Windows 11 2. Wireless Wi-fi 3. Hdmi Ports 4. Usb Ports 5. Lan Port Ii. Wall Mounted. Iii. 1x Hdmi 10meters Iv. Software: 1. Content Management System (cms): Built-in Software For Scheduling And Managing Advertisements Remotely 2. Media Playback: Supports Image, Video, And Dynamic Content (mp4, Jpeg, Png, Etc.) 3. Split Screen: Ability To Display Multiple Ads Or Information Zones Simultaneously B. Acrylic Signage I. Acrylic Signage For Full Mission Bridge Simulator 1. 1x Full Mission Bridge Simulator 2. 1x Instructor Station 3. 1x Scenario Development Station 4. 1x Unauthorized Personnel Keep Out 5. 4x Fire Exit 6. 2x Fire Extinguisher 7. 1x No Foods, Drinks, Cellphone Allowed Inside The Simulator 8. 2x Ongoing Assessment 9. 1x Pmma Simulator Building (big Font For The Entrance) Ii. Acrylic Signage For Mini Bridge Simulator A) 1x Bridge Simulator B) 7x Mini Bridge Simulator (station 1 To 7) C) 1x Instructor Station D) 1x Unauthorized Personnel Keep Out E) 4x Fire Exit F) 7x Fire Extinguisher G) 1x No Foods, Drinks, Cellphones Allowed Inside The Simulator H) 7x Push Or Pull I) 1x Entrance Iii. Acrylic Signage For Full Mission Engine Room Simulator 1. 1x Engine Simulator 2. 1x Instructor Station 3. 1x Scenario Development Station 4. 1x Unauthorized Personnel Keep Out 5. 4x Fire Exit 6. 2x Fire Extinguisher 7. 1x No Foods, Drinks, Cellphone Allowed Inside The Simulator 8. 2x Ongoing Assessment 9. 1x Switch Board Panel 10. 1x Engine Room View 11. 1x Local Operating System 12. 1x Engine Control Room Console Iv. Acrylic Signage For Mini Engine Simulator 1. 10x Mini Engine Simulator (station 1 To 10) 2. 1x Instructor Station 3. 1x Scenario Development Station 4. 1x Unauthorized Personnel Keep Out 5. 4x Fire Exit 6. 2x Fire Extinguisher 7. 10x No Foods, Drinks, Cellphone Allowed Inside The Simulator 8. 2x Ongoing Assessment 9. 1x Entrance V. Acrylic Signage 1. 2x Briefing/ Debriefing 2. 2x Instructor Computer G. Civil Works I. Other General Requirements 1 Ea. Project Billboard/signboard 1 L.s Occupational Safety And Health Program 1 L.s Mobilization/demobilization Ii. Civil, Mechanical, Electrical, & Sanitary/plumbing Works Part A. Earthworks 1 L.s Removal Of Structures And Obstruction Part C. Finishings And Other Civil Works 36.89 M² Ceiling, Metal Frame Pvc 36.89 M² Wall, Metal Frame, Fiber Cement Board 6mm 16.2 M² Wall (pvc) 50.58 M² Tempered Glass Door,12mm, Reflective 28.26 M² Tempered Glass Wall/barriers,etc.(10mm) 23.04 M² Aluminum Glass Window 8.1 M² Doors, Solid Panel 1 L.s Granite Tiles 406.28 M² Acoustal Ceiling Panel 912.86 M² Painting Works, Masonry/concrete 4.05 M² Painting Works, Wood 249.38 M² 100mm Chb Nonload Bearing (including Reinforcing Steel) 167.66 M² Plain Cement Plaster Finish 80 M² Floor Tiles, Rubber, On Finish Floor 54.94 M² Floor Tiles, Rubber, On Raised Floor System 206.14 M² Floor Tiles, Spc Flanks, Click On Part D. Electrical 1 L.s Panelboard With Main And Branch Breakers 1 L.s Wires And Wiring Devices 1 L.s Lighting Fixtures And Lamps 1 L.s Conduit, Boxes, And Fittings 1 L.s Pole Mounted Power Transformer (oisc) 1 L.s Network Cabling 1 L.s. Door Access And Card Reader Sytem Part E. Mechanical 1 L.s. Airconditioning, Package/split Type H. Other Furnitures And Equipments Vip/student Lounge And Simulator Furnitures 2 Set Vip Sofa, Wood, (1pc 3 Seat, 2pc 1seat, 1 Center Table, 2 Side Table) 6 Set Student Table With 4 Chair 1 Unit Coffee Percolator, 15 Liter 1 Unit Water Dispenser, Bottom Load 4 Pcs Barstool 11 Pcs Korean Blinds - 3mw X 2.7mh 11 Pcs Korean Blinds - 2mw X 2.7mh 6 Set Black Curtains With Curtain Rod - Asstd Size (verify On Site) 1 Pc Conference Table, Deck - 4.88m X 1.22m 1 Pc Conference Table, Engine - 6.10m X 1.22m 48 Pcs Conference Chair 2 Set Instructor Table And Chair I. Terms And Conditions 1. A 3-year Warranty Requirement For Computer Hardware And Console Peripherals. The Replacement Of Defective Computer Hardware And Consoles By The Supplier Shall Be Free Of Charge. Mobilization, Lodging, Labor, Spare Parts, And Other Material Expenses On Site Shall Be Covered Within The Warranty Period. 2. The Full Mission Bridge And Engine Simulator Area Shall Have An Industrial Grade, Heavy Duty Rubber Mat Flooring With Anti-skid/anti Slip Shock Resistant Coin/ Round Stud Design. 3. The Software Comes With A 3-year Warranty Inclusive Of New Simulator Software Updates Along With Compatible Computer Hardware. 4. The Prospective Bidder Shall Prepare A 3d Drawing Perspective For The Class A Full Mission Bridge Station With 270° Visual, 7 Class B 120° Visual Mini Bridge Station, Class A Full Mission Engine, 10 Class C Mini-engine Stations, Server Station, Instructor Station, 2 Briefing And Debriefing Station, Based On The Overview Layout Floor Plan Of The Simulator Site Building. The Drawings Shall Be Submitted As Part Of The Bidding Document. 5. The Project Shall Be Implemented Within 150 Cd. Liquidating Damages Will Be Applicable For Any Delays. 6. A Comprehensive Guide Shall Be Provided, Offering Detailed Instructions On System Operation And Maintenance Activities, Facilitating Ease Of Use And System Upkeep. 7. Onsite Training Sessions Shall Be Conducted By Certified Instructors And Technical Experts, Facilitating Smooth Knowledge Transfer And Ensuring Proficient System Operation Before The Acceptance Of Completed Project. Certificates Shall Be Provided Upon Completion Of The Training Sessions. 8. Structured Cabling Standards To Establish A Reliable And Efficient Network Infrastructure. 9. The Simulator Manufacturer Should Be An Iso 9001:2015 And Iso 14001:2015 Certified Business. 10. The Simulator Should Be Certified By An Internationally Recognized Classification Society And May Also Be Certified By National Authorities. 11. The Software Must Be Perpetual License. 12. The Supplier Shall Conduct An Annual Face-to-face Maintenance Session With Quarterly Health Checks In Between (remote/ Face-to-face) To Ensure The System's Optimal Functionality And Performance. 13. The Supplier Must Resolve Any Software Or Hardware Issues Within 2 To 5 Business Days Of Their Occurrence To Minimize Downtime And Disruptions. 14. All Hardware Installations Must Adhere To Software Specifications To Guarantee Seamless Integration And Operation. 15. The Computer Hardware Supplied Must Be Sourced From Proven Technology Hardware Companies, Quality And Performance Standards To Ensure Optimal Functionality And Compatibility With The Software. 16. Bidders Are Required To Offer Continuous Retraining Sessions Free Of Charge During The Warranty Period To Ensure Users' Proficiency With The System. 17. Bidders Should Provide Manufacturer Authorization Or Exclusivity Certificate To Ensure The Authenticity And Legality Of The Supplied Products. 18. The Bidder Is Responsible For Performing A Thorough Site Inspection, And A Site Inspection Certificate Issued By The Agency Shall Be Submitted As Part Of The Eligibility Requirements. 19. The Bridge Simulator Shall Be Integrated With The Engine Simulator Ensuring Compatibility And Functionality. 20. All Simulator Stations Can Connect And Enable Them To Interact With Each Other In A Coordinated Scenario. 21. The Simulator Scenario Development Station Shall Be Capable, The Same As An Instructor Station Capable Of Deploying Scenarios To Other Stations. 22. All Other Simulator Specifications And Capabilities Not Indicated Herein, The Simulator Shall Comply With The Simulator Performance Standards As Required In Maritime Industry Authority (marina) Evaluation Instrument For Full Mission Bridge And Engine Simulator. 23. The Bidders Should Provide A Breakdown Of The Unit Prices Of The Major Components In The Original Of Duly Signed And Accomplished Price Schedule(s) Under Financial Component Envelope Upon Bid Submission. Furthermore, They Should Provide A More Detailed Breakdown As A Condition For Issuance Of Notice To Proceed. 24. The Winning Bidder Shall Submit The Following Documents Before The Approval Of The Certificate Of Acceptance: · Warranty Certificate For The Bridge Simulator · Warranty Certificate For The Engine Room Simulator · Certificate Of Ownership To Philippine Merchant Marine Academy For The Installed Bridge Simulator Reflecting The License Key · Certificate Of Ownership To Philippine Merchant Marine Academy For The Installed Engine Room Simulator Reflecting The License Key · Soft Copy Of The User’s Manual, Instructor’s Manual, Technical Installation And Maintenance Manual For Newly Installed Bridge And Engine Simulators · Hard Copy Of The User’s Manual (5 Copies), Instructor’s Manual (5 Copies), Technical And Maintenance Manual (5 Copies) Each For Newly Installed Bridge And Engine Simulators 25. The Winning Bidder Shall Conduct Operational Training On The Use Of The Simulators For Instructors And End Users Before The Approval Of The Certificate Of Acceptance. A Training Certificate Shall Be Issued After The Training. 26. The Winning Bidder Shall Conduct Training On Equipment Troubleshooting And Maintenance For Technical Support Personnel Before The Approval Of The Certificate Of Acceptance. A Certificate Shall Be Issued After The Training. "27. Key Personnel For Civil Works Contractor Key Personnel. The Bidder Shall Employ The Minimum Key Personnel As Proposed During The Submission Of The Bid, As Exhibited Under Its Submitted Technical Documents. The Construction Team Shall Have A Project Manager, Safety Officer, Electricians, Masons, Carpenters And Laborers. At The Minimum, The Project Team Shall Compose Of The Following Key Personnel: • One (1) Project Manager/engineer 5yrs Relevant Experience • One (1) Safety Officer 3yrs Relevant Experience • One (1) Construction Foreman 5yrs Relevant Experience For Personnel That Are Not Regular Or Non-organic Employees Of The Bidder’s Company And To Be Nominated For Position In The Project Team, A Duly Notarized Undertaking Or Agreement Shall Be Submitted Together With The Resume Of The Personnel Stating That The Services Of The Nominated Personnel Shall Be Engaged By The Bidder And The Nominated Personnel Accepts The Said Engagement For The Duration And Until Completion Of The Project." *****nothing Follows***
Contact
Tender Id
6757f43a-65f2-3060-8142-78a5848b637eTender No
12041582Tender Authority
Philippine Merchant Marine Academy ViewPurchaser Address
-Website
notices.ps-philgeps.gov.ph
